TABLE OF CONTENTS

SPECIFICATIONS GROUP

DIVISION 07 - THERMAL AND MOISTURE PROTECTION
- 078400 FIRESTOPPING
- 079200 JOINT SEALANTS

DIVISION 08 - OPENINGS
- 080671 DOOR HARDWARE SETS
- 081113 HOLLOW METAL DOORS AND FRAMES
- 087100 DOOR HARDWARE

DIVISION 09 - FINISHES
- 099123 INTERIOR PAINTING

DIVISION 26 - ELECTRICAL
- 260010 ELECTRICAL GENERAL REQUIREMENTS
- 260519 CONDUCTORS AND CABLES
- 260526 GROUNDING AND BONDING
- 260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 260533 RACEWAYS AND BOXES
- 260553 ELECTRICAL IDENTIFICATION
- 260573 OVERCURRENT DEVICE COORDINATION STUDY/ARC FLASH HAZARD ANALYSIS
- 260999 ELECTRICAL TESTING
- 262200 DRY-TYPE TRANSFORMERS (600 V AND LESS)
- 262413 SWITCHBOARDS
- 262726 WIRING DEVICES
- 262813 FUSES
- 265119 LED INTERIOR LIGHTING
- 265700 LUMINAIRE PRODUCT DATA SHEETS

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY
- 283100 FIRE ALARM

END OF TABLE OF CONTENTS
SECTION 26 0010 - ELECTRICAL GENERAL REQUIREMENTS

PART 1 - GENERAL .. 1
 1.1 RELATED DOCUMENTS .. 1
 1.2 SUMMARY ... 1
 1.3 REFERENCES .. 2
 1.4 QUALITY ASSURANCE .. 2
 1.5 CODES, PERMITS AND FEES .. 2
 1.6 DRAWINGS .. 3
 1.7 MATERIAL AND EQUIPMENT MANUFACTURERS .. 3
 1.8 INSPECTION OF SITE ... 4
 1.9 ITEMS REQUIRING PRIOR APPROVAL .. 4
 1.10 SHOP DRAWINGS/SUBMITTALS .. 4
 1.11 COORDINATION DRAWINGS .. 5
 1.12 OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS 5
 1.13 RECORD DRAWINGS ... 5
 1.14 INSTRUCTION OF OWNER PERSONNEL ... 6
 1.15 WARRANTY ... 6
 1.16 USE OF EQUIPMENT ... 6
 1.17 COORDINATION .. 6

PART 2 - PRODUCTS .. 7
 (NOT APPLICABLE) .. 7

PART 3 - EXECUTION ... 7
 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION 7
 3.2 DEMOLITION WORK ... 7
 3.3 INSTALLATION OF EQUIPMENT ... 8
 3.4 WORK IN EXISTING BUILDINGS .. 8
 3.5 TEMPORARY SERVICES .. 8
 3.6 CUTTING, PATCHING AND DAMAGE TO OTHER WORK ... 8
 3.7 EXCAVATION AND BACKFILLING .. 8
 3.8 EQUIPMENT CONNECTIONS .. 9
 3.9 CLEANING .. 9
 3.10 PROTECTION AND HANDLING OF EQUIPMENT AND MATERIALS 9
 3.11 EXTRA WORK ... 9
 3.12 DRAWINGS AND MEASUREMENTS .. 10

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SUMMARY

A. This Section includes electrical general administrative and procedural requirements. The following requirements are included in this Section to supplement the requirements specified in Division 1 Specification Sections.
1.3 REFERENCES

A. All materials shall be new. The electrical and physical properties of all materials, and the design, performance characteristics, and methods of construction of all items of equipment, shall be in accordance with the latest issue of the various, applicable Standard Specifications of the following recognized authorities:

1. A.N.S.I. - American National Standards Institute
2. A.S.T.M. - American Society for Testing Materials
3. I.C.E.A. - Insulated Cable Engineers Association
4. I.E.E.E. - Institute of Electrical and Electronics Engineers
5. N.E.C. - National Electrical Code
6. N.E.C.A. - National Electrical Contractors Association
7. N.E.M.A. - National Electrical Manufacturer's Association
8. U.L. - Underwriters Laboratories, Inc.

1.4 QUALITY ASSURANCE

A. Scope of Work: Furnish all labor, material, equipment, technical supervision, and incidental services required to complete, test and leave ready for operation the electrical systems as specified in the Division 26 Sections and as indicated on Drawings.

1. Contract Documents are complimentary, and what is required by one shall be as binding as if required by all. In the event of inconsistencies or disagreements within the Construction Documents bids shall be based on the most expensive combination of quality and quantity of the work indicated.
2. The Contractor understands that the work herein described shall be complete in every detail.

B. Ordinances and Codes: Perform all Work in accordance with applicable Federal, State and local ordinances and regulations, the Rules and Regulations of NFPA, NECA, and UL, unless otherwise indicated.

1. Notify the Architect/Engineer before submitting a proposal should any changes in Drawings or Specifications be required to conform to the above codes, rules or regulations. After entering into Contract, make all changes required to conform to above ordinances, rules and regulations without additional expense to the Owner.

C. Source Limitations: All equipment of the same or similar systems shall be by the same manufacturer.

D. Tests and Inspections: Perform all tests required by state, city, county and/or other agencies having jurisdiction. Provide all materials, equipment, etc., and labor required for tests.

E. Performance Requirements: Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the trades involved.

F. Sequence and Schedule: Work so as to avoid interference with the work of other trades. Be responsible for removing and relocating any work which in the opinion of the Owner’s Representatives causes interference.

1.5 CODES, PERMITS AND FEES

A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for electrical work shall be secured and paid for by the Contractor. All work shall conform to all applicable codes, rules and regulations.
B. Rules of local utility companies shall be complied with. Coordinate with the utility company supplying service to the installation and determine all devices including, but not limited to, all current and potential transformers, meter boxes, C.T. cabinets and meters which will be required and include the cost of all such items and all utilities costs in proposal.

C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed Drawings or diagrams which may be required by the governing authorities. Where the Drawings and/or Specifications indicate materials or construction in excess of code requirements, the Drawings and/or Specifications shall govern.

1.6 DRAWINGS

A. The Drawings show the location and general arrangement of equipment, electrical systems and related items. They shall be followed as closely as elements of the construction will permit.

B. Examine the Drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly, providing such fittings, conduit, junction boxes and accessories as may be required to meet such conditions.

C. Deviations from the Drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.

D. The architectural and structural Drawings take precedence in all matters pertaining to the building structure, mechanical Drawings in all matters pertaining to mechanical trades and electrical Drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the Drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.

E. Drawings are not intended to be scaled for rough-in or to serve as shop drawings. Take all field measurements required to complete the Work.

1.7 MATERIAL AND EQUIPMENT MANUFACTURERS

A. All items of equipment shall be furnished complete with all accessories normally supplied with the catalog items listed and all other accessories necessary for a complete and satisfactory operating system. All equipment and materials shall be new and shall be standard products of manufacturers regularly engaged in the production of electrical equipment and shall be of the manufacturer's latest design.

B. If an approved manufacturer is other than the manufacturer used as the basis for design, the equipment or product provided shall be equal in size, quality, durability, appearance, capacity, and efficiency through all ranges of operation, shall conform with arrangements and space limitations of the equipment shown on the plans and/or specified, shall be compatible with the other components of the system and shall comply with the requirements for Items Requiring Prior Approval specified in this section of the Specifications. All costs to make these items of equipment comply with these requirements including, but not limited to, electrical work, and building alterations shall be included in the original Bid. Similar equipment shall be by one manufacturer.

C. Where existing equipment is modified to include new switches, circuit breakers, metering or other components, the new components shall be by the original equipment manufacturer and shall be listed for installation in the existing equipment. Where original equipment manufacturer components are not available, third party aftermarket components shall be listed for the application and submitted to the engineer for approval. Reconditioned or salvaged components shall not be used unless specifically indicated on the drawings.
1.8 INSPECTION OF SITE

A. Visit the site, examine and verify the conditions under which the Work must be conducted before submitting Proposal. The submitting of a Proposal implies that the Contractor has visited the site and understands the conditions under which the Work must be conducted. No additional charges will be allowed because of failure to make this examination or to include all materials and labor to complete the Work.

1.9 ITEMS REQUIRING PRIOR APPROVAL

A. Bids shall be based upon manufactured equipment specified. All items that the Contractor proposes to use in the Work that are not specifically named in the Contract Documents must be submitted for review prior to bids. Such items must be submitted in compliance with Division 1 specifications. Requests for prior approval must be accompanied by complete catalog information, including but not limited to, model, size, accessories, complete electrical information and performance data in the form given in the equipment schedule on the drawings at stated design conditions. Where items are referred to by symbolic designations on the drawings, all requests for prior approval shall bear the same designations.

1. Equipment to be considered for prior approval shall be equal in quality, durability, appearance, capacity and efficiency through all ranges of operation, shall fulfill the requirements of equipment arrangement and space limitations of the equipment shown on the plans and/or specified and shall be compatible with the other components of the system.

2. All costs incurred to make equipment comply with other requirements, including providing maintenance, clearance, electrical, replacement of other components, and building alterations shall be included in the original bid.

B. Voluntary alternates may be submitted for consideration, with listed addition or deduction to the bid.

1.10 SHOP DRAWINGS/SUBMITTALS

A. Submit project-specific submittals for review in compliance with Division 1.

B. All shop Drawings shall be submitted in groupings of similar and/or related items (lighting fixtures, switchgear, etc.). Incomplete submittal groupings will be returned unchecked.

C. Provide detailed layout shop Drawings (on transparent media) of all lighting and power distribution systems, routing of conduits, combining of circuits, circuiting, details and related information necessary of installation and maintenance. After review by the Architect/Engineer, a copy of Drawings will be stamped and returned to the Contractor.

D. If deviations (not substitutions) from Contract Documents are deemed necessary by the Contractor, details of such deviations, including changes in related portions of the project and the reasons therefore, shall be submitted with the submittal for approval.

E. Submit for approval shop drawings for all electrical systems or equipment but not limited to the items listed below. Where items are referred to by symbolic designation on the Drawings and Specifications, all submittals shall bear the same designation (light fixtures). Refer to other sections of the electrical Specifications for additional requirements.

1. Wiring Devices
2. Lighting Control Devices
3. Enclosed Switches and Circuit Breakers
4. Switchboards
5. Dry Type Transformers (600 V and Less)
6. Fuses
7. Interior Lighting
8. Fire Alarm

1.11 COORDINATION DRAWINGS
A. Submit project specific coordination drawings for review in compliance with Division 1 Specification Sections.

1.12 OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS
A. Submit project specific Operation and Maintenance Instructional Manuals for review in compliance with Division 1 Specification Sections.
B. Provide complete operation and maintenance instructional manuals covering all electrical equipment herein specified, together with parts lists. Maintenance and operating instructional manuals shall be job specific to this project. Generic manuals are not acceptable. Four (4) copies of all literature shall be furnished for Owner and shall be bound in ring binder form. Maintenance and operating instructional manuals shall be provided when construction is approximately 75% complete.
C. The operating and maintenance instructions shall include a brief, general description for all electrical systems including, but not limited to:
1. Routine maintenance procedures.
2. Trouble-shooting procedures.
3. Contractor's telephone numbers for warranty repair service.
5. Recommended spare parts lists.
6. Names and telephone numbers of major material suppliers and subcontractors.
7. System schematic drawings on 8-1/2" x 11" sheets.

1.13 RECORD DRAWINGS
A. Submit record drawings in compliance with Division 1.
B. Contractor shall submit to the Architect/Engineer, record drawings on electronic media which have been neatly marked to represent as-built conditions for all new electrical work.
C. The Contractor shall keep accurate note of all deviations from the construction documents and discrepancies in the underground concealed conditions and other items of construction on field drawings as they occur. The marked up field documents shall be available for review by the Architect, Engineer and Owner at their request.

1.14 INSTRUCTION OF OWNER PERSONNEL
A. Before final inspection, instruct Owner's designated personnel in operation, adjustment, and maintenance of electrical equipment and systems at agreed upon times. A minimum of 8 hours of formal instruction to Owner's personnel shall be provided for each building. Additional hours are specified in individual specification sections.
B. Use operation and maintenance manuals as basis for instruction. Review contents of manual with personnel in detail to explain all aspects of operation and maintenance.
C. In addition to individual equipment training provide overview of each electrical system. Utilize the as-built documents for this overview.

D. Prepare and insert additional data in operation and maintenance manual when need for such data becomes apparent during instruction, or as requested by Owner.

1.15 WARRANTY

A. Warranty: Comply with the requirements in Division 1 Specification Sections. Contractor shall warranty that the electrical installation is free from defects and agrees to replace or repair, to the Owner’s satisfaction, any part of this electrical installation which becomes defective within a period of one year (unless specified otherwise in other Division 26 sections) from the date of substantial completion following final acceptance, provided that such failure is due to defects in the equipment, material, workmanship or failure to follow the contract documents.

B. Contractor shall be responsible for any temporary services including equipment and installation required to maintain operation as a result of any equipment failure or defect during warranty period.

C. File with the Owner any and all warranties from the equipment manufacturers including the operating conditions and performance capacities they are based on.

1.16 USE OF EQUIPMENT

A. The use of any equipment, or any part thereof for purposes other than testing even with the Owner’s consent, shall not be construed to be an acceptance of the work on the part of the Owner, nor be construed to obligate the Owner in any way to accept improper work or defective materials.

B. Do not use Owner’s lamps for temporary lighting except as allowed and directed by the Owner. Equip lighting fixtures with new lamps when the project is turned over to the Owner.

1.17 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."

D. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.
PART 2 - PRODUCTS

(NOT APPLICABLE)

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 DEMOLITION WORK

A. All demolition of existing electrical equipment and materials will be done by this Contractor unless otherwise indicated. Include all items such as, but not limited to, electrical equipment, devices, lighting fixtures, conduit, and wiring called out on the Drawings and as necessary whether such items are actually indicated on the Drawings or not in order to accomplish the installation of the specified new work.

B. In general, demolition work is indicated on the Drawings. However, the Contractor shall visit the job site to determine the full extent and character of this work.

C. Unless specifically noted to the contrary, removed materials shall not be reused in the work. Salvaged materials that are to be reused shall be stored safe against damage and turned over to the appropriate trade for reuse. Salvaged materials of value that are not to be reused shall remain the property of the Owner unless such ownership is waived. Items on which the Owner waives ownership shall become the property of the Contractor, who shall remove and legally dispose of same, away from the premises.

D. Where equipment or fixtures are removed, outlets shall be properly blanked off, and conduits capped. After alterations are done, the entire installation shall present a "finished" look, as approved by the Architect/Engineer. The original function of the present electrical work to be modified shall not be changed unless required by the specific revisions to the system as specified or as indicated.

E. Reroute signal wires, lighting and power wiring as required to maintain service. Where walls and ceilings are to be removed as shown on the Drawings, the conduit is to be cut off by the Electrical Trades so that the abandoned conduit in these walls and ceilings may be removed with the walls and ceilings by the Architectural Trades. All dead-end conduit runs shall be plugged at the remaining line outlet boxes or at the panels.

F. Where new walls and/or floors are installed which interfere with existing outlets, devices, etc., the Electrical Trades shall adjust, extend and reconnect such items as required to maintain continuity of same.

G. All electrical work in altered and unaltered areas shall be run concealed wherever possible. Use of surface raceway or exposed conduits will be permitted only where approved by the Architect/Engineer.
H. Existing lighting shall be reused where indicated on plans. Reused fixtures shall be detergent cleaned, relamped and reconditioned suitable for satisfactory operation and appearance.

3.3 INSTALLATION OF EQUIPMENT

A. Install all equipment in strict accordance with all directions and recommendations furnished by the manufacturer. Where such directions are in conflict with the Drawings and Specifications, report such conflicts to the Architect/Engineer for resolution.

B. Device Location:

1. Allow for relocation prior to installation of wiring devices and other control devices, for example, receptacles, switches, fire alarm devices, and access control devices, within a 10-foot radius of indicated location without additional cost.

3.4 WORK IN EXISTING BUILDINGS

A. The Owner will provide access to existing buildings as required. Access requirements to occupied buildings shall be identified on the project schedule. The Contractor, once Work is started in the existing building, shall complete same without interruption so as to return work areas as soon as possible to Owner.

B. Adequately protect and preserve all existing and newly installed Work. Promptly repair any damage to same at Contractor's expense.

C. Consult with the Owner's Representative as to the methods of carrying on the Work so as not to interfere with the Owner's operation any more than absolutely necessary. Accordingly, all service lines shall be kept in operation as long as possible and the services shall only be interrupted at such time as will be designated by the Owner's Representative.

D. Prior to starting work in any area, obtain approval for doing so from a qualified representative of the Owner who is designated and authorized by the Owner to perform testing and abatement of all hazardous materials including but not limited to, asbestos. The Contractor shall not perform any inspection, testing, containment, removal or other work that is related in any way whatsoever to hazardous materials under the Contract.

3.5 TEMPORARY SERVICES

A. Provide and remove upon completion of the project, in accordance with the general conditions and as described in Division 1, a complete temporary electrical and telephone service during construction.

3.6 CUTTING, PATCHING AND DAMAGE TO OTHER WORK

A. Refer to General Conditions for requirements.

B. All cutting, patching and repair work shall be performed by the Contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

3.7 EXCAVATION AND BACKFILLING

A. Provide all excavation, trenching, tunneling, dewatering and backfilling required for the electrical work. Coordinate the work with other excavating and backfilling in the same area.
B. Where conduit is installed less than 2'6" below the surface of pavement, provide concrete encasement, 4" minimum coverage, all around or as shown on the electrical Drawings.

C. Backfill all excavations with well-tamped granular material. Backfill all excavations under wall footings with lean mix concrete up to underside of footings and extend concrete within excavation a minimum of four (4) feet each side of footing. Granular backfill shall be placed in layers not more than 8 inches in thickness. 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.

D. Backfill outside building with granular material to a height 12 inches over top of pipe compacted to 95 percent compaction as specified above. Backfill remainder of excavation with unfrozen, excavated material in such a way to prevent settling.

3.8 EQUIPMENT CONNECTIONS

A. Make connections to equipment, motors, lighting fixtures, and other items included in the work in accordance with the approved shop Drawings and rough-in measurements furnished by the manufacturers of the particular equipment furnished. All additional connections not shown on the Drawings, but called out by the equipment manufacturer's shop Drawings shall be provided.

3.9 CLEANING

A. All debris shall be removed daily as required to maintain the work area in a neat, orderly condition.

B. Final cleanup shall include, but not be limited to, washing of fixture lenses or louvers, switchboards, substations, motor control centers, panels, etc. Fixture reflectors and lenses or louvers shall be left with no water marks or cleaning streaks.

3.10 PROTECTION AND HANDLING OF EQUIPMENT AND MATERIALS

A. Equipment and materials shall be protected from theft, injury or damage.

B. Protect conduit openings with temporary plugs or caps.

C. Provide adequate storage for all equipment and materials delivered to the job site. Location of the space will be designated by the Owner's representative or Architect/Engineer. Equipment set in place in unprotected areas must be provided with temporary protection.

3.11 EXTRA WORK

A. For any extra electrical work which may be proposed, this Contractor shall furnish to the General Contractor, an itemized breakdown of the estimated cost of the materials and labor required to complete this work. The Contractor shall proceed only after receiving a written order from the General Contractor establishing the agreed price and describing the work to be done. Prior to any extra work which may be proposed, the Electrical Contractor shall submit unit prices (same prices for increase/decrease of work) for the following items: 1/2", 3/4", 1", 1-1/2" conduit; #12, #10, #8, #6, #2 wire; receptacle, data box, fire alarm combination visual/audible notification appliance, fire alarm visual notification appliance, or other devices which may be required for any proposed extra work.
3.12 DRAWINGS AND MEASUREMENTS

A. The Drawings are not intended to be scaled for rough-in measurements nor to serve as Shop Drawings. Field measurements necessary for ordering materials and fitting the installation to the building construction and arrangement are the Contractor’s responsibility. The Contractor shall check latest Architectural Drawings and locate light switches from same where door swings are different from Electrical Drawings.

END OF SECTION 26 0010
SECTION 26 0519 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

1. Building wires and cables rated 600V and less.
2. Connectors, splices, and terminations rated 600 V and less.

B. Related Sections include the following:

1. Division 26 Section "Control/Signal Transmission Media" for transmission media used for control and signal circuits.
2. Division 26 Section "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V.
3. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.3 SUBMITTALS

A. Field Quality-Control Test Reports
1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.

B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for types THHN/THWN-2.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger, except VFC cable, which shall be extra flexible stranded.

C. Each feeder shall be of the same conductor and insulation material (phase, neutral, and parallel).

D. Use conductor not smaller than 12 AWG for power and lighting circuits. Unless indicated otherwise, all circuits shall be 2#12, 1#12G, ¾”C.

E. Use conductor not smaller than 14 AWG for control circuits, provided by Electrical Contractor.

F. Where equipment is listed for use with copper conductors only, splice from aluminum to copper prior to entering equipment or use copper conductors for the entire length of feeder.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.

B. Fire Alarm Circuits: Type THHN/THWN-2, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

G. Support communication cables above accessible ceiling, using spring metal clips or plastic cable ties to support cables from structure. Do not rest cable on ceiling panels.

H. Neatly train and lace wiring inside boxes, equipment, and panelboards.

I. Branch circuits may be combined up to 6 circuits in a homerun conduit.

J. Provide a separate neutral conductor for each circuit.

K. Electrical Contractor shall be responsible for de-rating of conductors as required by N.E.C. when more than three current carrying conductors are installed in a single raceway or cable.

L. Between support, hangers and termination no more than 3" deflection from the bottom of the cable to a horizontal line between the support/hanger or termination.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than un-spliced conductors.

1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

2. Use compression type terminations for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

D. Clean conductor surfaces before installing lugs and connectors.
E. Make splices, taps, and terminations to carry full ampacity of conductors with no perceptible temperature rise.

F. Use solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and larger.

G. Use piercing connector with insulating covers for conductor splices and taps, 8 AWG and larger only for taps to existing feeders. Do not use piercing connectors in new construction.

H. Use Sta-Kon connectors to terminate stranded conductors #10 AWG and smaller to screw terminals.

I. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260533 "Raceways and Boxes."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Perform the following field quality control tests in accordance with Division 26 section “Electrical Testing”

1. Description: Test all feeders rated 100 A and above.

2. Visual and Mechanical Inspection

 a. Inspect cables for physical damage and proper connection in accordance with the one line diagram.
 b. Test cable mechanical connections with an infrared survey.
 c. Check cable color-coding against project Specifications and N.E.C. requirements.

3. Electrical Tests

 a. Perform insulation resistance test on each conductor with respect to ground and adjacent conductors. Applied potential to be 1000 volts dc for 1 minute.
 b. Perform continuity test to insure proper cable connection.

4. Test Values

 a. Minimum insulation resistance values shall be not less than fifty mega-ohms.
B. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 26 0519
SECTION 26 0526 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

B. Related Sections include the following:
 1. Division 26 Section “Electrical General Requirements”.
 2. Division 26 Section “Conductors and Cables”.

1.3 REFERENCES
A. ASTM B 3: Specification for Soft or Annealed Copper Wire.
B. ASTM B 8: Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard or Soft.
C. ASTM B 33: Specification for Tinned Soft or Annealed Copper Wire for Electrical Purposes.
1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Product Data: For the following:
 1. Ground rods.

C. Qualification Data: For firms and persons specified in "Quality Assurance" Article.

D. Field Test Reports: Submit written test reports to include the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
 4. Indicate overall system resistance to ground.
 5. Indicate overall Telecommunications system resistance to ground.

1.5 PROJECT RECORD DOCUMENTS

A. Submit under provisions of Division 26 “Electrical General Requirements”.

B. Accurately record actual locations of grounding electrodes and connections to building steel.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Refer to specification section “Electrical Testing.”

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 1. Comply with UL 467.

C. Comply with NFPA 70; for overhead-line construction and medium-voltage underground construction, comply with IEEE C2.

D. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.

E. Comply with ANSI/TIA/EIA-607 “Standard for Commercial Building Grounding and Bonding Requirements for Telecommunications”.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Grounding Conductors and Cables:
 a. Refer to Division 26 Section “Conductors and Cables”.

2. Grounding Rods:
 b. Apache Grounding/Erico Inc.
 c. Chance/Hubbell.

3. Mechanical Connectors:
 b. Burndy.
 c. Chance/Hubbell.

4. Exothermic Connections:
 a. Cadweld.

2.2 GROUNDING CONDUCTORS

A. For insulated conductors, comply with Division 26 Section “Conductors and Cables.”

B. Material: Copper.

C. Equipment Grounding Conductors: Insulated with green-colored insulation.
D. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use colored tape, alternating bands of green and yellow tape to provide a minimum of three bands of green and two bands of yellow.

E. Grounding Electrode Conductors: Stranded cable.

F. Underground Conductors: Bare, stranded, copper unless otherwise indicated.

G. Bare Copper Conductors: Comply with the following:

H. Copper Bonding Conductors: As follows:
 1. Bonding Conductor: Stranded copper conductor; size per the NEC.
 2. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; size per the NEC.
 3. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; size per the NEC.

I. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulators.

2.3 CONNECTOR PRODUCTS
A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.
B. Bolted Connectors: Bolted-pressure-type connectors, or compression type.
C. Welded Connectors: Exothermic-welded type, in kit form, and selected for the specific application per manufacturer's written instructions.
D. Compression-Type Connectors: Pure, wrought copper, per ASTM B187.

2.4 GROUNDING ELECTRODES
A. Ground Rods: Copper-clad steel.
 2. Length: 120 inches.

PART 3 - EXECUTION

3.1 EQUIPMENT GROUNDING
A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
B. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
C. Underground Grounding Conductors: No. 2/0 AWG minimum. Bury at least 24 inches below grade or bury 12 inches above duct bank when installed as part of the duct bank.

D. In raceways, use insulated equipment grounding conductors.

E. Install equipment grounding conductors in all feeders and circuits. Terminate each end on suitable lugs, bus or bushing.

F. Verify specific equipment grounding requirements with the manufacturer's recommendations.

3.2 CONNECTIONS

A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.

2. Make connections with clean, bare metal at points of contact.

5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

B. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells. Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Equipment Grounding Conductor Terminations

1. Use solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and larger.

2. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.

D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.

E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.

F. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

G. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.
3.3 INSTALLATION

A. Equipotential Ground: Interconnect grounding electrodes to form one, electrically continuous, equipotential grounding electrode system. Grounding electrodes to be interconnected include:

1. Ground rods.
2. Metal water service pipe.
3. List other underground systems here.

B. Ground Rods: Install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes.

1. Verify that final backfill and compaction has been complete before driving ground rods.
2. Drive ground rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.
3. Interconnect ground rods with grounding electrode conductors. Use exothermic welds, except at test wells and as otherwise indicated. Make connections without exposing steel or damaging copper coating.

C. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage. Install in conduit where routed above grade.

D. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.

E. Metal Water Service Pipe: Provide insulated copper grounding conductors, in conduit, from building’s main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes by grounding clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

F. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with grounding clamp connectors.

G. Separately Derived AC Power Systems: Ground separately-derived ac power system neutrals including distribution transformers to grounding electrodes per NFPA 70.

H. Grounding Bus:

1. Install grounding bus in the locations listed below and elsewhere as indicated:
 a. Electrical equipment rooms.

2. Use insulated spacer; space 1 inch from wall and support from wall 6 inches above finished floor, unless otherwise indicated.

I. Equipment Grounding: Provide a permanent and continuous bonding of conductor enclosures, equipment frames, power distribution equipment ground busses, cable trays, metallic raceways, and other non-current carrying metallic parts of the electrical system.

J. Bond together metal building elements not attached to grounded structure; bond to ground.
3.4 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality control tests in accordance with Division 26 section “Electrical Testing”

1. Inspect grounding and bonding system conductors and connections for tightness and proper installation and for compliance with the Drawings and Specifications.
2. After installing grounding system but before permanent electrical circuitry has been energized, test for compliance with requirements.
 a. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal.
 b. Measure ground resistance not less than two full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 c. Perform tests, by the fall-of-potential method according to IEEE 81. Instrumentation utilized shall be as defined in Section 12 of IEEE 81 and shall be specifically designed for ground impedance testing. Provide sufficient spacing so that curves flatten in the 62% area of the distance between the item under test and the current electrode.
3. Provide drawings locating each ground rod and ground rod assembly and other grounding electrodes, identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
 a. Equipment Rated 500 kVA and Less: 10 ohms.
 b. Equipment Rated 500 to 1000 kVA: 5 ohms.
4. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

3.5 GRADING AND PLANTING

A. Restore surface features, including vegetation, at areas disturbed by Work of this Section. Reestablish original grades, unless otherwise indicated. If sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other activities to their original condition. Include application of topsoil, fertilizer, lime, seed, sod, sprig, and mulch. Comply with Division 2 Section “Landscaping.” Maintain restored surfaces. Restore disturbed paving as indicated.

END OF SECTION 26 0526
SECTION 26 0529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

PART 3 - EXECUTION

3.1 APPLICATION

3.2 SUPPORT INSTALLATION

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

3.4 INSTALLATION OF ROOF MOUNTED SUPPORTS

3.5 CONCRETE BASES

3.6 PAINTING
C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

A. Product Data: For the following:

1. Steel slotted support systems.
2. Nonmetallic slotted support systems.

1.6 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
4. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch-diameter holes at a maximum of 8 inches o.c., in at least 1 surface.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasecure, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES
A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with:
 a. Two-bolt conduit clamps

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
2. To Existing Concrete: Expansion anchor fasteners.

E. Slotted support systems applications:

1. Indoor dry and damp Locations: Painted Steel
2. Outdoors and interior wet locations: Galvanized Steel

F. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

G. Do not fasten supports to pipes, ducts, mechanical equipment, and conduit.

H. Obtain permission from Architect/Engineer before using powder-actuated anchors.

I. Obtain permission from Architect/Engineer before drilling or cutting structural members.
J. Fabricate supports from structural steel or steel channel. Rigidly weld members or use hexagon head bolts to present neat appearance with adequate strength and rigidity. Use spring lock washers under all nuts.

K. Install surface-mounted cabinets and panelboards with minimum of four anchors.

L. Use sheet metal channel to bridge studs above and below cabinets and panelboards recessed in hollow partitions.

M. The Contractor shall replace all supports and channels that sag, twist, and/or show signs of not providing proper structural support, to the equipment, it is intended for, as determined by the Owner and Architect/Engineer. All costs associated with replacing supports and steel channels shall be incurred by the Contractor.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 INSTALLATION OF ROOF MOUNTED SUPPORTS

A. Install in accordance with manufacturer’s instructions.

B. If gravel top roof, gravel must be removed around and under support.

C. Consult roofing manufacturer for roof membrane compression capacities. If required, a compatible sheet of roofing material (rubber pad) may be required under rooftop support to disperse concentrated loads and add further membrane protection.

D. Utilize properly sized clamps and accessories to suit conduit sizes.

3.5 CONCRETE BASES

A. Provide concrete bases for all floor mounted electrical equipment.

B. Provide concrete bases for all exterior, grade level electrical equipment, and where indicated.

C. Base/Pad Construction:

1. Construct per manufacturer’s recommendations for particular equipment, including suggested piers and dowel rods.
2. Interior concrete bases shall have a minimum depth of 4” unless other indicated or recommended by the manufacturer.
3. Construct concrete bases for primary and secondary power distribution equipment per requirements of the electrical utility, where submitted for its review.

D. Anchor equipment to base per both supports and equipment manufacturer’s instructions.

E. Coordinate conduit openings and sleeve locations in base with requirements of equipment to be supported.
3.6 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 0529
SECTION 26 0533 - RACEWAYS AND BOXES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. ENT: Electrical nonmetallic tubing.
C. FMC: Flexible metal conduit.
D. IMC: Intermediate metal conduit.
E. LFMC: Liquidtight flexible metal conduit.
F. LFNC: Liquidtight flexible nonmetallic conduit.
G. RNC: Rigid nonmetallic conduit.
H. PVC: Polyvinyl Chloride.
I. HDPE: High Density Polyethylene.

1.4 SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

1.6 COORDINATION
A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. AFC Cable Systems, Inc.
 2. Alfex Inc.
 3. Allied Tube Triangle Century.
 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 5. International Metal Hose.
 6. Electri-Flex Co
 7. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
 8. LTV Steel Tubular Products Company – Manhattan/CDT/Cole-Flex.
 11. Wheatland.
B. Rigid Steel Conduit: ANSI C80.1.

C. IMC: ANSI C80.6.

D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

E. EMT: ANSI C80.3.

F. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 1. Fittings for EMT: Steel, set-screw type.
 2. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.

2.2 FIRE ALARM EMT

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Allied Tube Triangle Century.

B. EMT conduit with bright red topcoat; Fire Alarm EMT.

C. EMT and Fittings: ANSI C80.3.

2.3 NONMETALLIC CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 3. Arnco Corp.
 4. Cantex Inc.
 7. ElecSys, Inc.
 8. Electri-Flex Co.
 9. Integral.
 10. Kor-Kap.
 12. Manhattan/CDT/Cole-Flex.
 13. RACO; Division of Hubbell, Inc.
 15. Spiralduct, Inc./AFC Cable Systems, Inc.

B. ENT: NEMA TC 13.

C. RNC: NEMA TC 2, Schedule 40 and Schedule 80 PVC.

D. ENT and RNC Fittings: NEMA TC 3; match to conduit or tubing type and material.
E. LFNC: UL 1660.

2.4 METAL WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hoffman.
 2. Square D.

B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

E. Wireway Covers: Screw-cover type.

F. Finish: Manufacturer’s standard enamel finish.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Sheet Metal Outlet and Device Boxes: NEMA OS 1. Shall be used within walls or ceiling.

B. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

2.6 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 1. Sealing Elements: NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 2. Pressure Plates: Stainless steel. Include two for each sealing element.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Provide raceways in interior and exterior locations in accordance with the “Raceway Application Matrix” included on the drawings.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.

 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.

 3. EMT: Use setscrew, steel fittings. Comply with NEMA FB 2.10.

D. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Install temporary closures to prevent foreign matter from entering raceways.

F. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.

G. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

I. Support conduit within 12 inches of enclosures to which attached.

J. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.

 1. Run parallel or banked raceways together on common supports.

 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

Q. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.

R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

S. Locate boxes so that cover or plate will not span different building finishes.

T. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

U. Provide a pull box (a handhole for outdoor applications) for each conduit run that exceeds 250 feet. Provide two pull boxes (handholes for outdoor applications) for runs that exceed 500 feet.

V. Route conduits in finished areas with exposed ceilings at underside of structural deck or as high as possible.

W. Outlet boxes within hazardous locations shall be of the proper class and division as noted in the N.E.C.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 2 Section "Earthwork" for pipe less than 6 inches in nominal diameter.

2. Install backfill as specified in Division 2 Section "Earthwork."

3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 2 Section "Earthwork."

4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.

 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

5. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits, placing them 24 inches o.c. Align planks along the width and along the centerline of conduit.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL AND COMMUNICATIONS PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Through-Penetration Firestop Systems."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed.

G. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

H. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.

I. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 7 Section "Through-Penetration Firestop Systems."

J. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.5 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Through-Penetration Firestop Systems."
3.7 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.8 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 26 0533
SECTION 26 0553 - ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Identification for raceway and metal-clad cable.
 2. Identification for conductors and communication and control cable.
 4. Warning labels and signs.
 5. Instruction signs.
 7. Miscellaneous identification products.

1.3 QUALITY ASSURANCE

B. Comply with NFPA 70.

1.4 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and

ELECTRICAL IDENTIFICATION 26 0553 - 1

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Color for Printed Legend:

1. Power Circuits: Black letters on an orange field.
2. Legend: Indicate system or service and voltage, if applicable.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 CONDUCTOR, COMMUNICATION AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 UNDERGROUND-LINE WARNING TAPE

A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.

1. Not less than 6 inches wide by 4 mils thick.
2. Compounded for permanent direct-burial service.
3. Embedded continuous metallic strip or core.
4. Printed legend shall indicate type of underground line.

2.4 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.

C. Warning label and sign shall include, but are not limited to, the following legends:
1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.5 EQUIPMENT IDENTIFICATION LABELS

B. Outdoor Equipment Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.

2. Tensile Strength: 50 lb, minimum.
3. Temperature Range: Minus 40 to plus 185 deg F.

B. Paint: Paint materials and application requirements are specified in Division 9 painting Sections.

C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

2.7 WIRING DEVICE IDENTIFICATION

A. Description: Self adhesive label with black upper case letters on clear polyester label, font size 7.

PART 3 - EXECUTION

3.1 APPLICATION

A. Accessible Raceways and Metal-Clad Cables More Than 600 V: Identify with "DANGER-HIGH VOLTAGE" in black letters at least 2 inches high, with self-adhesive vinyl labels. Repeat legend at 10-foot maximum intervals.

B. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service and Feeders More Than 400 A: Identify with orange self-adhesive vinyl label.

C. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, self-adhesive vinyl tape applied in bands:

1. Fire Alarm System: Red.

D. Power-Circuit Conductor Identification: For conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape and marker tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
E. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in the same junction or pull box, use marker tape. Identify each ungrounded conductor according to source and circuit number as indicated on Drawings. Identify control circuits by control wire number as indicated on shop drawings.

F. Branch-Circuit Conductor Identification: Mark junction box covers in indelible ink with the panel and breaker numbers of other circuits contained within.

G. Conductor Identification: Locate at each conductor at panelboard gutters, pull boxes, outlet and junction boxes, and each load connection or termination point.

H. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. Install underground-line warning tape for both direct-buried cables and cables in raceway.

I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply self-adhesive warning labels. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.

1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.

J. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Engraved, laminated acrylic or melamine label mechanically secured.
 b. Outdoor Equipment: Stenciled.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

2. Equipment to Be Labeled: If included on project. All items may not be on project.
 a. Panelboards, electrical cabinets, and enclosures.
 b. Electrical switchgear and switchboards.
 c. Transformers.
 d. Disconnect switches.
 e. Breakers or switches at distribution panels.

3.2 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location:
1. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

2. Conduit Markers: Provide identification for each power conduit containing conductors rated 400A or greater.

C. Apply identification devices to surfaces after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.

F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.

1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.

2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.

3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.

4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

H. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

I. Label information arrangement for 3 lines of text.

1. Line one shall describe the panel or equipment. Line one example: “DP-XX,” “RP-XX,” “T-XX,” “EF-XX,” etc.

2. Line two shall describe the first disconnecting means feeding this panel or equipment. Line two example: “Fed from DP-XX,” “Fed from RP-XX,” etc.

3. Line three indicates that location of the disconnecting means as identified in line two. Line three example: “First Floor Elect. Rm #XXX.”

4. Line four shall include “Via T-XX” when panel or equipment is fed from a transformer.
J. Examples:

<table>
<thead>
<tr>
<th>RP-1A</th>
<th>EF-1</th>
<th>LP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FED FROM DP-1A</td>
<td>FED FROM MCC-1A</td>
<td>LOCATED IN</td>
</tr>
<tr>
<td>ELECTRICAL ROOM A100</td>
<td>MECHANICAL ROOM F101</td>
<td>ELECTRICAL ROOM A100</td>
</tr>
<tr>
<td>VIA T-1A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K. Fusible Enclosed Switches and Distribution Equipment: Install self-adhesive vinyl label indicating fuse rating and type on the outside of door on each fused switch.

L. Painted Identification: Prepare surface and apply paint according to Division 9 painting Sections.

M. Degrease and clean surface to receive nameplates.

N. Install nameplate and labels parallel to equipment lines.

O. Secure nameplate to equipment front using screws.

P. Secure nameplate to inside surface of door on panelboard that is recessed in finished locations.

Q. Identify conduit using field painting where required.

R. Paint red colored band on each fire alarm conduit and junction box.

S. Paint bands 10 feet on center, and 4 inches minimum in width.

END OF SECTION 26 0553
SECTION 26 0573 – OVERCURRENT DEVICE COORDINATION STUDY/ARC FLASH HAZARD ANALYSIS

PART 1 - GENERAL .. 1

1.1 RELATED DOCUMENTS ... 1
1.2 SCOPE .. 1
1.3 REFERENCES .. 1
1.4 SUBMITTALS FOR REVIEW/APPROVAL .. 2
1.5 SUBMITTALS FOR CONSTRUCTION ... 2
1.6 QUALIFICATIONS .. 3
1.7 COMPUTER SOFTWARE PROGRAMS ... 3

PART 2 - PRODUCTS ... 3

2.1 STUDIES .. 3
2.2 DATA COLLECTION .. 3
2.3 SHORT-CIRCUIT AND PROTECTIVE DEVICE EVALUATION STUDY .. 4
2.4 PROTECTIVE DEVICE COORDINATION STUDY ... 4
2.5 ARC FLASH HAZARD ANALYSIS .. 5
2.6 REPORT SECTIONS .. 6

PART 3 - EXECUTION .. 7

3.1 FIELD ADJUSTMENT ... 7
3.2 ARC FLASH WARNING LABELS ... 7

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SCOPE
A. The contractor shall furnish short-circuit and protective device coordination studies as prepared by the electrical equipment manufacturer.

B. The contractor shall furnish an Arc Flash Hazard Analysis Study per the requirements set forth in NFPA 70E -Standard for Electrical Safety in the Workplace. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D prepared by the electrical equipment manufacturer.

C. The scope of the studies shall include all new distribution equipment supplied by the equipment Manufacturer under this contract.

1.3 REFERENCES
A. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 1. IEEE 141 – Recommended Practice for Electric Power Distribution and Coordination of Industrial and Commercial Power Systems
 2. IEEE 242 – Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
 3. IEEE 399 – Recommended Practice for Industrial and Commercial Power System Analysis

OVERCURRENT DEVICE COORDINATION STUDY/ARC FLASH HAZARD ANALYSIS 26 0573 - 1
6. IEEE 1584 -Guide for Performing Arc-Flash Hazard Calculations

B. American National Standards Institute (ANSI):
 1. ANSI C57.12.00 – Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers
 2. ANSI C37.13 – Standard for Low Voltage AC Power Circuit Breakers Used in Enclosures
 3. ANSI C37.010 – Standard Application Guide for AC High Voltage Circuit Breakers Rated on a Symmetrical Current Basis

C. The National Fire Protection Association (NFPA)
 1. NFPA 70 -National Electrical Code, latest edition
 2. NFPA 70E – Standard for Electrical Safety in the Workplace

1.4 SUBMITTALS FOR REVIEW/APPROVAL
 A. The short-circuit and protective device coordination studies shall be submitted to the design engineer prior to receiving final approval of the distribution equipment shop drawings and/or prior to release of equipment drawings for manufacturing. If formal completion of the studies may cause delay in equipment manufacturing, approval from the engineer may be obtained for preliminary submittal of sufficient study data to ensure that the selection of device and characteristics will be satisfactory.

1.5 SUBMITTALS FOR CONSTRUCTION
 A. The results of the short-circuit, protective device coordination and arc flash hazard analysis studies shall be summarized in a final report. Five (5) bound copies of the complete final report shall be submitted. Additional copies of the short-circuit input and output data, where required, shall be provided on CD in PDF format.
 B. The report shall include the following sections:
 1. Executive Summary.
 2. Descriptions, purpose, basis and scope of the study.
 3. Tabulations of circuit breaker, fuse and other protective device ratings versus calculated short circuit duties.
 4. Protective device time versus current coordination curves, tabulations of relay and circuit breaker trip unit settings, fuse selection.
 5. Fault current calculations including a definition of terms and guide for interpretation of the computer printout.
 6. Details of the incident energy and flash protection boundary calculations.
 7. Recommendations for system improvements, where needed.
 8. One-line diagram.
 C. Arc flash labels shall be provided in hard copy and a copy of the computer analysis software viewer program is required to provide arc flash labels in electronic format.
1.6 QUALIFICATIONS

A. The short-circuit, protective device coordination and arc flash hazard analysis studies shall be conducted under the supervision and approval of a Registered Professional Electrical Engineer skilled in performing and interpreting the power system studies.

B. The Registered Professional Electrical Engineer shall be a full-time employee of the equipment manufacturer.

C. The Registered Professional Electrical Engineer shall have a minimum of five (5) years of experience in performing power system studies.

D. The equipment manufacturer shall demonstrate experience with Arc Flash Hazard Analysis by submitting names of at least ten actual arc flash hazard analysis it has performed in the past year.

1.7 COMPUTER SOFTWARE PROGRAMS

A. Computer Software Programs: Subject to compliance with requirements, provide products by one of the following:

1. EDSA Micro Corporation.
2. SKM Systems Analysis, Inc.
3. ESA Inc.
4. CGI CYME.
5. Operation Technology, Inc.

PART 2 - PRODUCTS

2.1 STUDIES

A. Contractor to furnish short-circuit and protective device coordination studies as prepared by equipment manufacturer.

B. The contractor shall furnish an Arc Flash Hazard Analysis Study per NFPA 70E -Standard for Electrical Safety in the Workplace, reference Article 130.3 and Annex D prepared by the equipment manufacturer.

2.2 DATA COLLECTION

A. Contractor shall furnish all data as required by the power system studies. The Engineer performing the short-circuit, protective device coordination and arc flash hazard analysis studies shall furnish the Contractor with a listing of required data immediately after award of the contract. The Contractor shall expedite collection of the data to assure completion of the studies as required for final approval of the distribution equipment shop drawings and/or prior to the release of the equipment for manufacturing.

B. Source combination may include present and future motors and generators.

C. Load data utilized may include existing and proposed loads obtained from Contract Documents provided by Owner.

D. If applicable, include fault contribution of existing motors in the study. The Contractor shall obtain required existing equipment data to satisfy the study requirements.
2.3 SHORT-CIRCUIT AND PROTECTIVE DEVICE EVALUATION STUDY

B. Transformer design impedances shall be used when test impedances are not available.

C. Provide the following:
 1. Calculation methods and assumptions
 2. Selected base per unit quantities
 3. One-line diagram of the system being evaluated
 4. Source impedance data, including electric utility system and motor fault contribution characteristics
 5. Tabulations of calculated quantities
 6. Results, conclusions, and recommendations.

D. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault at each:
 1. Electric utility’s supply termination point
 2. Incoming switchgear
 3. Unit substation primary and secondary terminals
 4. Low voltage switchgear
 5. Motor control centers
 6. Standby generators and automatic transfer switches
 7. Branch circuit panelboards
 8. Other significant locations throughout the system.

E. For grounded systems, provide a bolted line-to-ground fault current study for areas as defined for the three-phase bolted fault short-circuit study.

F. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short circuit ratings
 2. Adequacy of switchgear, motor control centers, and panelboard bus bars to withstand short-circuit stresses
 3. Notify design engineer in writing, of existing, circuit protective devices improperly rated for the calculated available fault current.

2.4 PROTECTIVE DEVICE COORDINATION STUDY

A. Proposed protective device coordination time-current curves (TCC) shall be displayed on log-log scale graphs.

B. Include on each TCC graph, a complete title and one-line diagram with legend identifying the specific portion of the system covered.

C. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.

D. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.

E. Plot the following characteristics on the TCC graphs, where applicable:
 1. Electric utility’s overcurrent protective device
 2. Medium voltage equipment overcurrent relays
3. Medium and low voltage fuses including manufacturer’s minimum melt, total clearing, tolerance, and damage bands
4. Low voltage equipment circuit breaker trip devices, including manufacturer’s tolerance bands
5. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves
6. Conductor damage curves
7. Ground fault protective devices, as applicable
8. Pertinent motor starting characteristics and motor damage points, where applicable
9. Pertinent generator short-circuit decrement curve and generator damage point
10. The largest feeder circuit breaker in each motor control center and applicable panelboard.

F. Provide adequate time margins between device characteristics such that selective operation is provided, while providing proper protection.

2.5 ARC FLASH HAZARD ANALYSIS

A. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D.

B. The flash protection boundary and the incident energy shall be calculated at all significant locations in the electrical distribution system (switchboards, switchgear, motor-control centers, panelboards, busway and splitters) where work could be performed on energized parts.

C. The Arc-Flash Hazard Analysis shall include all significant locations in 240 volt and 208 volt systems fed from transformers equal to or greater than 125 kVA where work could be performed on energized parts.

D. Safe working distances shall be based upon the calculated arc flash boundary considering an incident energy of 1.2 cal/cm².

E. When appropriate, the short circuit calculations and the clearing times of the phase overcurrent devices will be retrieved from the short-circuit and coordination study model. Ground overcurrent relays should not be taken into consideration when determining the clearing time when performing incident energy calculations.

F. The short-circuit calculations and the corresponding incident energy calculations for multiple system scenarios must be compared and the greatest incident energy must be uniquely reported for each equipment location. Calculations must be performed to represent the maximum and minimum contributions of fault current magnitude for all normal and emergency operating conditions. The minimum calculation will assume that the utility contribution is at a minimum and will assume a minimum motor contribution (all motors off). Conversely, the maximum calculation will assume a maximum contribution from the utility and will assume the maximum amount of motors to be operating. Calculations shall take into consideration the parallel operation of synchronous generators with the electric utility, where applicable.

G. The incident energy calculations must consider the accumulation of energy over time when performing arc flash calculations on buses with multiple sources. Iterative calculations must take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators should be decremented as follows:

1. Fault contribution from induction motors should not be considered beyond 3-5 cycles.
2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g. contributions from permanent magnet generators will typically decay from 10 per unit to 3 per unit after 10 cycles).

H. For each equipment location with a separately enclosed main device (where there is adequate separation between the line side terminals of the main protective device and the work location), calculations for incident energy and flash protection boundary shall include both the line and load side of the main breaker.

I. When performing incident energy calculations on the line side of a main breaker (as required per above), the line side and load side contributions must be included in the fault calculation.
J. Mis-coordination should be checked amongst all devices within the branch containing the immediate protective device upstream of the calculation location and the calculation should utilize the fastest device to compute the incident energy for the corresponding location.

K. Arc Flash calculations shall be based on actual overcurrent protective device clearing time. Maximum clearing time will be capped at 2 seconds based on IEEE 1584-2002 section B.1.2. Where it is not physically possible to move outside of the flash protection boundary in less than 2 seconds during an arc flash event, a maximum clearing time based on the specific location shall be utilized.

2.6 REPORT SECTIONS

A. Input data shall include, but not be limited to the following:
 1. Feeder input data including feeder type (cable or bus), size, length, number per phase, conduit type (magnetic or non-magnetic) and conductor material (copper or aluminum).
 2. Transformer input data, including winding connections, secondary neutral-ground connection, primary and secondary voltage ratings, kVA rating, impedance, % taps and phase shift.
 3. Generation contribution data, (synchronous generators and Utility), including short-circuit reactance (X''d), rated MVA, rated voltage, three-phase and single line-ground contribution (for Utility sources) and X/R ratio.
 4. Motor contribution data (induction motors and synchronous motors), including short-circuit reactance, rated horsepower or kVA, rated voltage, and X/R ratio.

B. Short-Circuit Output Data shall include, but not be limited to the following reports:
 1. Low Voltage Fault Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 a. Voltage
 b. Calculated fault current magnitude and angle
 c. Fault point X/R ratio
 d. Equivalent impedance
 2. Momentary Duty Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 a. Voltage
 b. Calculated symmetrical fault current magnitude and angle
 c. Fault point X/R ratio
 d. Calculated asymmetrical fault currents
 1) Based on fault point X/R ratio
 2) Based on calculated symmetrical value multiplied by 1.6
 3) Based on calculated symmetrical value multiplied by 2.7
 e. Equivalent impedance
 3. Interrupting Duty Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 a. Voltage
 b. Calculated symmetrical fault current magnitude and angle
 c. Fault point X/R ratio
 d. No AC Decrement (NACD) Ratio
 e. Equivalent impedance
 f. Multiplying factors for 2, 3, 5 and 8 cycle circuit breakers rated on a symmetrical basis
 g. Multiplying factors for 2, 3, 5 and 8 cycle circuit breakers rated on a total basis
C. Recommended Protective Device Settings:

1. Phase and Ground Relays:
 a. Current transformer ratio
 b. Current setting
 c. Time setting
 d. Instantaneous setting
 e. Recommendations on improved relaying systems, if applicable.

2. Circuit Breakers:
 a. Adjustable pickups and time delays (long time, short time, ground)
 b. Adjustable time-current characteristic
 c. Adjustable instantaneous pickup
 d. Recommendations on improved trip systems, if applicable.

D. Incident energy and flash protection boundary calculations

1. Arcing fault magnitude
2. Protective device clearing time
3. Duration of arc
4. Arc flash boundary
5. Working distance
6. Incident energy
7. Hazard Risk Category
8. Recommendations for arc flash energy reduction

PART 3 - EXECUTION

3.1 FIELD ADJUSTMENT

A. The contractor shall adjust relay and protective device settings according to the recommended settings table provided by the coordination study.

B. Make minor modifications to equipment as required to accomplish conformance with short circuit and protective device coordination studies.

C. Notify design engineer in writing of any required major equipment modifications.

3.2 ARC FLASH WARNING LABELS

A. The contractor shall provide a 3.5 in. x 5 in. thermal transfer type label of high adhesion polyester for each work location analyzed.

B. All labels will be based on recommended overcurrent device settings and will be provided after the results of the analysis have been presented to the owner and after any system changes, upgrades or modifications have been incorporated in the system.

C. The label shall include the following information, at a minimum:

1. Location designation
2. Nominal voltage
3. Flash protection boundary
4. Hazard risk category
5. Incident energy
6. Working distance
7. Engineering report number, revision number and issue date.

D. Labels shall be machine printed, with no field markings.

E. Arc flash labels shall be provided in the following manner and all labels shall be based on recommended overcurrent device settings.

1. For each 480 and applicable 208 volt panelboard, one arc flash label shall be provided.
2. For each motor control center, one arc flash label shall be provided.
3. For each low voltage switchboard, one arc flash label shall be provided.
4. For each switchgear, one flash label shall be provided.
5. For medium voltage switches one arc flash label shall be provided.

F. Labels shall be field installed by the contractor.

END OF SECTION 26 0573
SECTION 26 0999 - ELECTRICAL TESTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SECTION INCLUDES

A. The General Contractor shall engage the services of a recognized corporately independent N.E.T.A. certified testing firm for the purpose of performing inspections and tests as herein specified. The Electrical Contractor shall be familiar with the work required by the testing agency, fully cooperate with implementation of the acceptance testing program, and provide any work in this section specifically required by the Electrical Contractor.

1.3 REFERENCES

1.4 QUALIFICATIONS

1.5 PERFORMANCE REQUIREMENTS

1.6 TEST INSTRUMENT CALIBRATION

1.7 TEST REPORTS

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 THERMOGRAPHIC SURVEY
1.3 REFERENCES

A. All inspections and tests shall be in accordance with the latest version of the following codes and standards except as provided otherwise herein.

1. National Electrical Manufacturer’s Association - NEMA
3. Institute of Electrical and Electronic Engineers - IEEE
7. State and Local Codes and Ordinances
8. Insulated Cable Engineers Association - ICEA
9. Association of Edison Illuminating Companies - AEIC
10. Occupational Safety and Health Administration
11. National Fire Protection Association - NFPA
 a. ANSI/NFPA 70: National Electrical Code
 b. ANSI/NFPA 70B: Electrical Equipment Maintenance
 c. NFPA 70E: Electrical Safety Requirements for Employee Workplaces

1.4 QUALIFICATIONS

A. The testing firm shall be a corporately independent testing organization, which can function as an unbiased testing authority, professionally independent of the manufacturers, suppliers, and installers of equipment or systems evaluated by the testing firm.

B. The testing firm shall be regularly engaged in the testing of electrical equipment devices, installations, and systems.

C. The lead, on site, technical person and at least 50% of the on site crew shall be currently certified by the InterNational Electrical Testing Association (NETA) or National Institute for Certification in Engineering Technologies in Electrical Power Distribution System Testing.

D. The testing firm shall only utilize technicians who are regularly employed by the firm on a full-time basis for testing services.

E. The Contractor shall submit proof of the above qualifications with bid proposal.

F. The terms used herewithin such as Test Agency, Test Contractor, Testing Laboratory, or Contractor Test Company, shall be construed to mean the testing organization.

G. Acceptable Testing Firms:
 1. Northern Electrical Testing; Phone (248) 689-8980.
 2. Utilities Instrumentation Services; Phone (734) 482-1450.
 3. Emerson/High Voltage Maintenance Corporation; Phone (248) 305-5596.
 4. Powertech Services, Inc.; Phone (810) 720-2280.
 5. Magna Electric; Phone (248) 667-9492.

1.5 PERFORMANCE REQUIREMENTS

A. The Electrical Contractor shall supply a suitable and stable source of electrical power to each test site. The testing firm shall specify the power requirements.
B. The Electrical Contractor shall notify the testing firm when equipment becomes available for acceptance tests. Work shall be coordinated to expedite project scheduling.

C. The testing firm shall notify the Owner's Representative prior to commencement of any testing.

D. Any system, material or workmanship, which is found defective on the basis of acceptance tests, shall be reported to the Engineer. The Electrical Contractor shall correct all defects.

E. The testing organization shall maintain a written record of all tests and shall assemble and certify a final test report.

F. Safety and Precautions

1. Safety practices shall include, but are not limited to, the following requirements:
 a. Occupational Safety and Health Act.
 c. Applicable state and local safety operating procedures.
 d. NETA Safety/Accident Prevention Program.
 e. Owner's safety practices.
 f. National Fire Protection Association - NFPA 70E.
 g. American National Standards for Personnel Protection.

2. All tests shall be performed with apparatus de-energized except where otherwise specifically required.
3. The testing organization shall have a designated safety representative on the project to supervise operations with respect to safety.

1.6 TEST INSTRUMENT CALIBRATION

A. Test Instrument Calibration

1. The testing firm shall have a calibration program, which assures that all applicable test instruments are maintained within rated accuracy.
2. The accuracy shall be directly traceable to the National Institute of Standards and Technology.
3. Instruments shall be calibrated in accordance with the following frequency schedule:
 a. Field instruments: Analog - 6 months maximum Digital - 12 months maximum
 b. Laboratory instruments: 12 months
 c. Leased specialty equipment: 12 months
 (Where accuracy is guaranteed by Lessor)
4. Dated calibration labels shall be visible on all test equipment.
5. Records must be kept up-to-date which show date and results of instruments calibrated or tested.
6. An up-to-date instrument calibration instruction and procedures shall be maintained for each test instrument.
7. Calibrating standard shall be of higher accuracy than that of the instrument tested.

B. Field Test Instrument Standards

1. All equipment used for testing and calibration procedures shall exhibit the following characteristics:
 a. Maintained in good visual and mechanical condition.
 b. Maintained in safe, operating condition.

C. Suitability of Test Equipment
1. All test equipment shall be in good mechanical and electrical condition.
2. Selection of metering equipment should be based on knowledge of the waveform of the variable being measured. Digital multi-meters may be average of RMS sensing and may include or exclude the dc component. When the variable contains harmonics of dc offset and, in general, any deviation from a pure sine wave, average sensing, average measuring RMS scaled meters may be misleading. Use of RMS measuring meters is recommended.
3. Field test metering used to check power system meter calibration must have any accuracy higher than that of the instrument being checked.
4. Accuracy of metering in test equipment shall be appropriate for the test being performed.
5. Waveshape and frequency of test equipment output waveforms shall be appropriate for the test and tested equipment.

1.7 TEST REPORTS

A. A test report shall be generated for each piece of major equipment or groups of equipment and shall include the following:
 1. A list of visual and mechanical inspections required by Division 26 Specification Sections in a checklist or similar format.
 2. Test reports, including test values where applicable, for all required electrical tests. Clearly indicate where test values fall outside of the limits of recommended values.
 3. Summary and interpretation of test results detailing problems located and recommended corrective measures.
 4. Record of infrared scan and photos showing potential problem locations.
 5. Signed and dated by the testing firm field superintendent stating that all required tests have been completed.

B. Test reports shall be furnished to the Architect/Engineer within 14 days of the completion each test on an ongoing basis. Original copies of the reports shall be furnished directly to the Architect/Engineer by the testing company prior to formal submittal via the Contractors.

PART 2 - PRODUCTS

Not Applicable

PART 3 - EXECUTION

3.1 THERMOGRAPHIC SURVEY

A. Visual and Mechanical Inspection
 1. Remove all necessary covers prior to scanning.
 2. Inspect for physical, electrical, and mechanical condition.

B. Equipment to be Scanned
 1. All components of the distribution system down to and including branch circuit panelboards and motor control centers. Return 3 months after equipment has been energized and loaded to do a final scan of all equipment.

C. Provide report indicating the following:
 1. Problem area (location of "hot spot").
 2. Temperature rise between "hot spot" and normal or reference area.
D. Test Parameters

1. Scanning distribution system with ability to detect 1°C between subject area and reference at 30°C.
2. Equipment shall detect emitted radiation and convert detected radiation to visual signal.
3. Infrared surveys should be performed during periods of maximum possible loading but not less than twenty percent (20%) of rated load of the electrical equipment being inspected.

E. Test Results

1. Interpretation of temperature gradients requires an experienced technician. Some general guidelines are:

 a. Temperature gradients of 37°F to 44.6°F indicate possible deficiency and warrant investigation.
 b. Temperature gradients of 37°F to 59°F indicate deficiency; repair as time permits.
 c. Temperature gradients of 61°F and above indicate major deficiency; repair immediately.

END OF SECTION 26 0999
SECTION 26 2200 - DRY-TYPE TRANSFORMERS (600 V AND LESS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 750 kVA:
 1. Distribution transformers.
B. Related Section includes the following:
 1. Division 26 Section “Electrical General Requirements.”
 2. Division 26 Section “Grounding and Bonding.”
 3. Division 26 Section “Conductors and Cables.”
 4. Division 26 Section “Raceways and Boxes.”

1.3 REFERENCES
A. ANSI/IEEE C57.12.9: Test Code for Dry-Type Distribution and Power Transformers
B. NEMA 250: Enclosures for Electrical Equipment (1000 Volts Maximum)
C. NEMA ST 1: Specialty Transformers
D. NEMA ST 20: Dry Type Transformers for General Applications
E. NEMA TP 1: Guide for Determining Energy Efficiency for Distribution Transformers
H. NFPA 70: National Electrical Code
I. UL 486A: Wire Connectors and Soldering Lugs for Use with Copper Conductors
J. UL 486B: Wire Connectors for Use with Aluminum Conductors
K. UL 506: Specialty Transformers
L. UL 1561: Dry-Type General Purpose and Power Transformers

1.4 SUBMITTALS
A. Product Data: Include rated nameplate data, capacities, weights, dimensions, utility or manufacturer's anchorage and base recommendations, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.

1. Transformer Inrush: Provide time-current coordination curves demonstrating transformer inrush and ANSI damage curves with primary overcurrent device selections to clear inrush yet still protecting damage curve.

B. Shop Drawings: Wiring and connection diagrams.
C. Qualification Data: Testing agency.
D. Source quality-control test reports. Include loss data, efficiency at 25, 50, 75 and 100 percent rated load, and sound level.
E. Output Settings Reports: Record of tap adjustments specified in Part 3.

1.5 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined in OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

1. Transformer Inrush: Provide time-current coordination curves demonstrating transformer inrush and ANSI damage curves with primary overcurrent device selections to clear inrush yet still protecting damage curve.

2. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise onsite testing specified in Part 3.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with IEEE C 57.12.91.

D. Comply with NFPA 70.

E. Energy-Efficient Transformers Rated 15 kVA and Larger: Certified as meeting NEMA TP 1, Class 1 efficiency levels when tested according to NEMA TP 2.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

B. Store, protect, and handle products to site under provisions of Division 26 section “Electrical General Requirements.”

C. Deliver transformers individually wrapped for protection and mounted on shipping skids.

D. Accept transformers on site. Inspect for damage.

E. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.

F. Handle in accordance with manufacturer’s written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to transformer internal components, enclosure, and finish.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 “Hangers and Supports for Electrical Systems.”

B. Coordinate installation of wall-mounting and structure-hanging supports.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acme.
3. GE Electrical Distribution & Control.
4. Siemens Industries, Inc.
5. Square D/Groupe Schneider NA.
2.2 MATERIALS

A. Cores: Grain-oriented, non-aging silicon steel.

B. Coils: Continuous windings without splices, except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper or aluminum.

C. Vibration Isolation: Isolate core and coil from enclosure using vibration-absorbing mounts.

D. Grounding: Ground core and coil assembly to enclosure by means of a visible flexible copper grounding strap.

2.3 DISTRIBUTION TRANSFORMERS

A. Description: Factory-assembled and tested, air cooled, dry-type transformer rated for 60 Hz operation. Comply with NEMA ST 20, and list and label as complying with UL 1561.

B. Provide transformers with base KVA as indicated without the use of internal cooling fans.

C. Cores: One leg per phase.

D. Indoor Enclosure: Ventilated, NEMA 250, Type 2. Provide lifting eyes or brackets.

E. Indoor Transformer Enclosure Finish: Comply with NEMA 250 for "[Indoor] [Outdoor] Corrosion Protection."
 1. Finish Color: Gray.

F. Insulation Class (15 kVA and larger): 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature TP-1 compliant.

G. Insulation Class (less than 15 kVA): 185 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

H. Basic Impulse Level: 10 kV.

I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

J. Case Temperature: Do not exceed 35 degrees C rise above ambient at warmest point.

K. Mounting: Suitable for mounting as indicated.

L. Nameplate: Include transformer connection data and overload capacity based on rated allowable temperature rise.

2.4 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.91.

B. Provide the following factory tests on each unit provided in accordance with NEMA ST 20:
 1. Voltage ratio.
2. Polarity and phase relation.
3. No load losses.
4. Impedance (501 kVA and larger).
5. Applied and induced potential.

C. Provide the factory tests on the actual transformers provided or on similar units identical to those provided in accordance with NEMA ST 20:
 1. Impedance (less than 501 kVA).
 2. Temperature rise.
 3. Audible sound level.
 4. Full load losses.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls and floors for suitable mounting conditions where transformers will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install Products in accordance with manufacturer's instructions.

B. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.

C. Install floor mounted transformers on and anchor to concrete bases according to manufacturer's recommendations, seismic codes at Project, and requirements in Division 26 section "Vibration and Seismic Controls for Electrical Systems."

 1. Mount transformers on vibration isolating pads suitable for isolating the transformer noise from the building structure.

D. Identification: Engraved metal or laminated-plastic nameplate mounted with corrosion resistant screws. Provide nameplate according to Division 26 Section "Electrical Identification" indicating the following:

 1. Transformer designation (e.g. "T-1").
 2. Primary power characteristics (e.g. "480V, 3PH, 3W").
 3. Secondary power characteristics (e.g. "208Y/120V, 3PH, 4W").
 4. Power rating (e.g. "75 kVA").
 5. Power source (e.g. "Fed from DP-1").

3.3 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding."
B. Connect wiring according to Division 26 Section "Conductors and Cables."

C. Provide conduit according to Division 26 Section “Raceways and Boxes” for connections to transformer case. Make conduit connections to side panel of enclosure.

D. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

E. Check for damage and tighten connections prior to energizing transformer.

3.4 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality control tests in accordance with Division 26 section “Electrical Testing” for transformers 75KVA and above:

1. Visual and Mechanical Inspection
 a. Inspect for physical damage, cracked insulators, tightness of connections, defective wiring and general mechanical and electrical conditions.
 b. Verify proper core grounding.
 c. Verify proper equipment grounding.
 d. Compare equipment nameplate with single line diagram and report discrepancies.

2. Electrical Tests
 a. Perform insulation resistance tests, winding-to-winding and windings-to-ground, utilizing a meg-ohmmeter with test voltage output in accordance with N.E.T.A. Acceptance Testing Specifications, Table 10.5. Test duration shall be for 10 minutes with resistance values tabulated at 30 seconds, 1 minute, and 10 minutes. Calculate Polarization index.
 b. Perform a turns ratio test between windings at every tap position. The final tap setting is to be set at the secondary system rated voltage at full load or as directed by the Architect/Engineer.
 c. Verify proper secondary voltage phase-to-phase and phase-to-neutral after energization and prior to loading.

3. Test Values
 a. Perform insulation resistance tests in accordance with N.E.T.A. Acceptance Testing Specifications, Table 10.5. Results to be temperature corrected in accordance with Table 10.14.
 b. The polarization index should be above 1.2 unless an extremely high value is obtained initially, such that when doubled will not yield a meaningful value.
 c. Turns ratio test results shall not deviate more than one half percent (0.5%) from either the adjacent coils or the calculated ratio.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 5 percent. Submit recording and tap settings as test results.
B. Adjust buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

END OF SECTION 26 2200
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes service and distribution switchboards rated 600 V and less.
B. Related Sections:

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. RFI: Radio-frequency interference.
D. RMS: Root mean square.

E. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions, utility or manufacturer's anchorage and base recommendations, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Related Submittals:

1. Provide overcurrent device coordination study to demonstrate proper overcurrent device ratings, adjustments, and settings.

C. Shop Drawings: For each switchboard and related equipment.

1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Enclosure types and details for types other than NEMA 250, Type 1.
 b. Bus configuration, current, and voltage ratings.
 c. Short-circuit current rating of switchboards and overcurrent protective devices.
 d. Descriptive documentation of optional barriers specified for electrical insulation and isolation if specified.
 e. Utility company's metering provisions with indication of approval by utility company if called out.
 f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

2. Wiring Diagrams: Power, signal, and control wiring.

D. Field quality-control test reports including the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1, include the following:

1. Routine maintenance requirements for switchboards and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
3. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
B. Source Limitations: Obtain switchboards through one source from a single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NEMA PB 2, "Deadfront Distribution Switchboards."

F. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver in sections or lengths that can be moved past obstructions in delivery path.

B. Store indoors in clean dry space with uniform temperature to prevent condensation. Protect from exposure to dirt, fumes, water, corrosive substances, and physical damage.

C. Handle switchboards according to NEMA PB 2.1 and NECA 400.

1.7 PROJECT CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:

 1. Ambient Temperature: Not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner’s written permission.

1.8 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 "Hangers and Supports for Electrical Systems."
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 MANUFACTURED UNITS

A. Manufacturers:

1. Eaton Corporation; Cutler-Hammer Products.
3. Siemens Industries, Inc.
4. Square D.

B. Front-Connected, Front-Accessible Switchboard:

1. Main devices over 1200A: Fixed, individually mounted.
2. Main devices below 1200A, panel mounted.
4. Sections rear aligned.

C. Nominal System Voltage: As noted on Drawings.

D. Main-Bus Continuous: As noted on Drawings.

E. Enclosure: Steel, NEMA 250, Type 1 not over 102 in height.

F. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray, finish over a rust-inhibiting primer on treated metal surface.

G. Insulation and isolation for main and vertical buses of feeder sections.

H. Utility Metering Compartment: Fabricated compartment and section complying with utility company's requirements. If separate vertical section is required for utility metering, match and align with basic switchboard.

I. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

J. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

K. Buses and Connections: Three phase, four wire, unless otherwise indicated.

 a. If bus is aluminum, use copper for circuit-breaker line connections.

2. Ground Bus: 1/4-by-2-inch- minimum-size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors. For busway feeders,
extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3. Contact Surfaces of Buses: Silver plated.

4. Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.

6. Neutral Buses: 100 percent of the ampacity of phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables. Bus extensions for busway feeder neutral bus are braced.

L. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

2.3 SURGE PROTECTIVE DEVICES

A. Direct bus connected type as specified in Division 26 Section “Surge Protective Devices.”

B. Provide Surge Protective Device for switchboards that are part of the emergency distribution system.

C. Provide Surge Protective Device for switchboards elsewhere where indicated on the drawings.

2.4 OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.

 a. Circuit Breakers 250A and Larger: Magnetic trip element with front-mounted, field-adjustable trip setting with restricted access cover.

2. Electronic trip-unit circuit breakers shall have RMS sensing, field-replaceable rating plug, and the following field-adjustable settings with restricted access cover:

 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.

B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.

 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 2. Application Listing: Appropriate for application; Type HACR for heating, air-conditioning, and refrigerating equipment.

C. Circuit breaker selection for transformer primary protection:

 1. Circuit Breaker Selection for Transformer Primary Protection: Provide circuit breakers with time-current characteristics to clear transformer inrush currents while still providing protection for the ANSI through-fault protection curve. Provide circuit breakers with adjustable magnetic trip or electronic trip units as necessary to provide time-current curve shaping to achieve long time trip indicated on drawings, inrush coordination and damage protection.

D. Circuit breakers rated 1200A and above:
1. Circuit breakers rated 1200A and above, not specified elsewhere with zone selective interlocking, shall be provided with an energy reducing maintenance switch with local status indicator.
2. The switch and status indicators shall be remote from the circuit breaker, located at the entrance to the electrical room where the circuit breaker is installed.

2.5 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:

1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.
2. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from 5 to 60 minutes.
 i. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent. Accumulated values unaffected by power outages up to 72 hours.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

2.6 CONTROL POWER

A. Control Circuits: 120 V, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Furnish portable test set to test functions of solid-state trip devices without removal from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.
C. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

PART 3 - EXECUTION

3.1 PROTECTION
A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

3.2 EXAMINATION
A. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION
A. Install switchboards and accessories according to NEMA PB 2.1 and NECA 40.
B. Install switchboards and anchor to concrete bases according to utility or manufacturer's recommendations, seismic codes at Project, and requirements in Division 26 Section "Hangers and Supports for Electrical Systems."
C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
E. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 1. Set field-adjustable switches and circuit-breaker trip ranges.

3.4 ADJUSTING
A. Adjust circuit breaker trip and time delay settings to values as instructed by the Engineer.

3.5 IDENTIFICATION
A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."
B. Switchboard Nameplates: Label each switchboard compartment with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.
3.6 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

B. Testing: Perform the following field quality control tests in accordance with Division 26 section “Electrical Testing.”

1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Sections 7.1, 7.5, 7.6, 7.9, 7.10, 7.11, and 7.14 as appropriate. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments, Equipment, and Reports:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 2) Prepare a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of switchboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 26 2413
SECTION 26 2726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Single and duplex receptacles
 2. Ground-fault circuit interrupter receptacles
 3. Integral surge suppression receptacles
 4. Isolated-ground receptacles.
 6. Device wall plates.
 7. Pin and sleeve connectors and receptacles.
 8. Floor service fittings
 9. Poke-through assemblies
 10. Access floor boxes
 11. Service poles.
 12. Receptacles with integral USB charger.

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. PVC: Polyvinyl chloride.
D. RFI: Radio-frequency interference.
E. SPD: Surge protective devices.
F. UTP: Unshielded twisted pair.
G. USB: Universal serial bus.

1.4 REFERENCES
D. NEMA FB 11: Plugs, Receptacles, and Connectors of the Pin and Sleeve Type for Hazardous Locations.
E. NEMA WD 1: General Requirements for Wiring Devices.
G. UL 20: General-Use Snap Switches.
H. UL 486A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.
I. UL 486B: Wire Connectors for Use with Aluminum Conductors.
J. UL 498: Electrical Attachment Plugs and Receptacles.
K. UL 943: Ground Fault Circuit Interrupters.
L. NECA 130-2010: Installing and Maintaining Wiring Devices.

1.5 SUBMITTALS
A. Product Data: Provide manufacturer's catalog information showing dimensions, colors, and configurations for each type of product indicated.

1.6 QUALITY ASSURANCE
A. Source Limitations: Obtain each type of wiring device through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and source.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with NFPA 70.
PART 2 - PRODUCTS

2.1 RECEPTACLES

A. GFCI Receptacles: Straight blade, non-feed-through type, with integral NEMA WD 6, Configuration 5-20R duplex receptacle; complying with UL 498 and UL 943. Design units for installation in a 2-3/4-inch- (70-mm-) deep outlet box without an adapter.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems GFR8300H-LA.
 c. Leviton 7899-HG.
 d. Pass & Seymour/Legrand; Wiring Devices Division 2095HG, PT2095HG (use with PTRA6STRNA prewired pigtail connector).

2.2 WALL SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hubbell Incorporated; Wiring Device-Kellems 1220 Series.
2. ArrowHart Wiring Devices AH1220 Series.
3. Leviton 1220 Series.
4. Bryant 4900 Series.
5. Pass & Seymour/Legrand; Wiring Devices Division PS20AC Series.

B. Device body: Plastic handle.

D. Snap Switches: Heavy Duty specification grade, quiet type; rated 20A., 120-277 V AC.

2.3 WALL PLATES

A. Manufacturers:

1. Provide wall plates and corresponding wiring devices from same manufacturer.

B. Single and combination types to match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.

2. Material for Unfinished Spaces:
 a. Galvanized steel
 b. Smooth, high-impact thermoplastic.

2.4 FINISHES

A. Color:

1. Wiring Devices Connected to Normal Power System: White, unless otherwise indicated or required by NFPA 70.
2. Wall Switches: White, unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install products in accordance with manufacturer’s instructions.

B. Prior to installation of devices, verify wall openings are neatly cut and will be completely covered by wall plates, clean debris from outlet boxes and provide extension rings to bring outlet boxes flush with finished surface.

C. Install devices and assemblies level, plumb, and square with building lines.

D. Arrangement of Devices:
 1. Coordinate locations of outlet boxes provided under Division 26 Section “Raceways and Boxes” to obtain mounting heights indicated on Drawings.
 2. Unless otherwise indicated, mount flush, with long dimension vertical, and with grounding terminal of receptacles on top.
 3. Install GFCI receptacles so that the “Push To Test” and “Reset” designations can be read correctly. If printed in both directions, install with ground pole on top.
 4. Install switches with OFF position down.

E. Install cover plates on switch, receptacle, and blank outlets in finished areas.

F. Use oversized plates for outlets installed in masonry walls.

G. Install galvanized steel plates on outlet boxes and junction boxes in unfinished areas, above accessible ceilings, and on surface mounted outlets.

H. Remove wall plates and protect devices and assemblies during painting.

I. Adjust devices and wall plates to be flush and level. Three corners of wall plates must be in contact with wall surfaces. Devices shall be solidly mounted against the box.

3.2 IDENTIFICATION

A. Comply with Division 26 Section “Electrical Identification.”

 1. Receptacles: Identify panelboard and circuit number from which served. Use adhesive label as specified in Division 26 Section “Electrical Identification” with black-filled lettering on face of wall plate, and durable wire markers or tags inside outlet boxes.

3.3 CONNECTIONS

A. Ground equipment according to Division 26 Section “Grounding and Bonding.” Connect wiring device grounding terminal to outlet box with bonding jumper. Use of quick ground strap or screw is not acceptable.

B. Connect wiring according to Division 26 Section “Conductors and Cables.” Connect wiring devices by wrapping conductor around screw terminal or by using back wiring and tightening the screw securely.
C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Inspect each wiring device for defects.
2. Operate each wall switch with circuit energized and verify proper operation.
3. After installing wiring devices and after electrical circuitry has been energized, test each receptacle for proper polarity, ground continuity, and compliance with requirements.
4. Test each GFCI receptacle for proper operation with both local and remote fault simulations according to manufacturer's written instructions.

B. Remove malfunctioning units, replace with new units, and retest as specified above.

END OF SECTION 26 2726
SECTION 26 2813 - FUSES

PART 1 - GENERAL .. 1

1.1 RELATED DOCUMENTS ... 1
1.2 SUMMARY .. 1
1.3 SUBMITTALS .. 1
1.4 QUALITY ASSURANCE ... 2
1.5 PROJECT CONDITIONS ... 2
1.6 COORDINATION .. 2
1.7 EXTRA MATERIALS .. 2

PART 2 - PRODUCTS ... 2

2.1 MANUFACTURERS .. 2
2.2 CARTRIDGE FUSES .. 2

PART 3 - EXECUTION .. 3

3.1 EXAMINATION ... 3
3.2 INSTALLATION ... 3
3.3 IDENTIFICATION .. 3

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Cartridge fuses rated 600 V and less for use in switches.
2. Spare-fuse cabinets.

1.3 SUBMITTALS

A. Product Data: Include the following for each fuse type indicated:

1. Dimensions and manufacturer’s technical data on features, performance, electrical characteristics, and ratings.
2. Let-through current curves for fuses with current-limiting characteristics.
3. Time-current curves, coordination charts and tables, and related data.
4. Fuse size for elevator feeders and elevator disconnect switches.

B. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Division 1 Section “Operation and Maintenance Data,” include the following:

a. Let-through current curves for fuses with current-limiting characteristics.
b. Time-current curves, coordination charts and tables, and related data.
c. Ambient temperature adjustment information.
1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses from a single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with:

1. NEMA FU 1 – Low Voltage Cartridge Fuses.
2. NFPA 70 – National Electrical Code.
3. UL 198C – High-Interrupting-Capacity Fuses, Current-Limiting Types.
4. UL 198E – Class R Fuses.
5. UL 512 – Fuseholders.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Quantity equal to 10% percent of each fuse type and size, but no fewer than one of each type and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Bussmann, Inc.
3. Ferraz Shawmut, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.

1. Feeders: Class RK1, fast acting.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Fuses shall be shipped separately. Any fuses shipped installed in equipment, shall be replaced by the Electrical Contractor with new fuses as specified above prior to energization at no additional expense to Owner. All fuses shall be stored in moisture free packaging at job site and shall be installed immediately prior to energization of the circuit in which it is applied.

B. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.3 IDENTIFICATION

A. Install labels indicating fuse rating and type on outside of the door on each fused switch.

END OF SECTION 26 2813
SECTI0N 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Interior solid-state luminaires that use LED technology.
2. Lighting fixture supports.

B. Related Requirements:

1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
2. Section 260926 "Lighting Control Panelboards" for panelboards used for lighting control.
3. Section 260933 "Central Dimming Controls" or Section 260936 "Modular Dimming Controls" for architectural dimming systems and for fluorescent dimming controls with dimming ballasts specified in interior lighting Sections.
4. Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. Lamp: LED and substrate as a replaceable assembly.
F. LED: Light-emitting diode.
G. Lumen: Measured output of lamp and luminaire, or both.
H. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project per IES LM-79 and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products or certified by a qualified independent testing agency.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.
1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Provide luminaires from a single manufacturer for each luminaire type.

C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with:
 1. NFPA 70 - National Electrical Code.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) or manufacturer’s standard warranty length (whichever is longer) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAires (LIGHTING FIXTURES)

A. Provide Luminaires as included in specification 26 5700 “Luminaire Product Data.” This section contains product data sheets from the basis of design manufacturer with annotations.

B. Acceptable alternate manufacturers are indicated on the product data sheets. Alternate manufacturer products shall be equal in all respects including materials, finishes, photometric performance and energy performance and shall include all options, features, and accessories identified.
C. The Luminaire schedule shown on the drawings is supplemental provided for convenience and reference only. The requirements of this section and 26 5700 shall govern.

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Unless otherwise specified in Luminaire product data, provide products with a minimum CRI of 80.

C. Unless otherwise specified in Luminaire product data, provide products with a CCT of 4100 K.

D. Unless otherwise specified in Luminaire product data, provide products with an IES LM-80 rated lamp life of 50,000 hours.

E. Driver

 1. Provided as an integrated component of the luminaire or as an external component of an assembly of luminaries.
 2. Nominal Input Voltage: As specified in product data.

2.3 MATERIALS

A. Metal Parts:

 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Factory-Applied Labels: Comply with UL 1598 Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

 1. Label shall include the following lamp characteristics:

 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
B. Single-Stem Hangers: Unless otherwise specified in Luminaire product data, provide products with a minimum 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

C. Wires: Unless otherwise specified in Luminaire product data, provide products with a minimum ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.

D. Rod Hangers: Unless otherwise specified in Luminaire product data, provide products with a minimum 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. Do not use permanent luminaires for temporary lighting.

3.3 INSTALLATION

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make wiring connections to branch circuit using building wire with insulation suitable for temperature conditions within luminaire.

C. Bond products and metal accessories to branch circuit equipment grounding conductor.
D. Connect luminaires to branch circuit outlet boxes provided under Division 26 Section "Raceways and Boxes" using 1/2" flexible conduit.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

D. A visual inspection shall be performed to verify cleanliness and alignment of the fixtures, misalignment and light leaks shall be corrected, and rattles due to ventilation system vibration shall be eliminated.

3.7 CLEANING

A. Clean electrical parts to remove conductive and deleterious materials.

B. Remove dirt and debris from enclosures and lenses.

C. Clean photometric control surfaces as recommended by manufacturer.

D. Clean finishes and touch up damage.

END OF SECTION 265119
FEATURES & SPECIFICATIONS

INTENDED USE — Built on the compact, low-profile Z strip channel, this LED strip offers long maintenance-free life, several color temperatures, lumen outputs and lengths. Ideal for new construction and retrofit applications in T8 lengths. Ideal for use in commercial, retail, manufacturing, warehouse, and display applications. Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. Click here for Acrylic-Polycarbonate Compatibility table for suitable uses.

CONSTRUCTION — Compact design channel and cover are formed from code-gauge cold-rolled steel. Easy to install six-point row aligner included for continuous row mounting. Finishes: Paint options include high-gloss, baked white enamel (WH), or matte black (MB). After fabrication, five-stage iron phosphate pre-treatment ensures superior paint adhesion and rust resistance.

OPTICS — Standard diffuse snap on/snap off lens eliminates pixels, improves uniformity and minimizes glare.

ELECTRICAL — Utilizes high-output LEDs integrated on a two-layer circuit board, ensuring cool-running operation. Optional internal pluggable wiring harness for reduced labor cost in row mounting applications (see PLR_ ordering information on page 3). Electronic LED driver is rated for 75 input watts maximum (see Operational Data on page two for actual wattage consumption), multi-volt input and 0-10V dimming standard. This fixture is designed to withstand a maximum line surge of 1.1kV at 75A combination wave for indoor locations, for applications requiring higher level of protection additional surge protection must be provided. LEDs provide 80CRI or 90 CRI at 3000 K, 3500 K, 4000 K or 5000 K. Lumen output up to 1,500 lumens per foot. Luminaire should be installed in applications where ambient temperatures do not exceed 86 °F (30 °C).

INSTALLATION — Fixture may be surface mounted (with or without ZSPRG hanger), pendant or stem mounted with appropriate mounting options. Six-point aligner locks in place for easy continuous row mounting.

LISTINGS — CSA certified to US and Canadian safety standards. For use in damp locations between -4 °F (-20 °C) and 86 °F (30 °C). DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

WARRANTY — 5-year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

ALTERNATES:
1. COLUMBIA - MPS
2. METALUX - SNLED
3. WILLIAMS - 75
ZL1D LED Striplight

Ordering Information

Lead times will vary depending on options selected. Consult with your sales representative. **Example:** ZL1D L48 3000LM FST MVOLT 40K 80CRI WH

<table>
<thead>
<tr>
<th>Series</th>
<th>Length</th>
<th>Reflectors</th>
<th>Nominal lumens</th>
<th>Diffuser</th>
<th>Voltage</th>
<th>Color temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZL1D</td>
<td>L24 24"</td>
<td>SMR Symmetric</td>
<td>1500LM 1,500 lumens</td>
<td>FST Drop lens</td>
<td>MVOLT 120-277V</td>
<td>30K 3000 K</td>
</tr>
<tr>
<td></td>
<td>L48 48"</td>
<td>ASMR Asymmetric</td>
<td>3000LM 3,000 lumens</td>
<td></td>
<td>120 120V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMR Symmetric</td>
<td>5000LM 5,000 lumens</td>
<td></td>
<td>208 208V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7000LM 7,000 lumens</td>
<td></td>
<td>240 240V</td>
<td></td>
</tr>
<tr>
<td>ZL1D</td>
<td>L96 96"</td>
<td>SMR Symmetric</td>
<td>6000LM 6,000 lumens</td>
<td></td>
<td>277 277V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10000LM 10,000 lumens</td>
<td></td>
<td>347 347V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14000LM 14,000 lumens</td>
<td></td>
<td>480 480V</td>
<td></td>
</tr>
</tbody>
</table>

Color Rendering Index

<table>
<thead>
<tr>
<th>Options</th>
<th>Paint finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>80CRI 80 CRI</td>
<td>WH White</td>
</tr>
<tr>
<td>90CRI 90 CRI</td>
<td>MB Matte black</td>
</tr>
<tr>
<td>PLR Plug-in wiring</td>
<td>GALVB Galvanized fixture with black plastic lens endcaps</td>
</tr>
<tr>
<td>PLRUG Plug-in wiring-low voltage</td>
<td></td>
</tr>
<tr>
<td>E7W Emergency battery pack</td>
<td>GALVW Galvanized fixture with white plastic lens endcaps</td>
</tr>
<tr>
<td>OUTEND Cord set to exit endplate of fixture</td>
<td></td>
</tr>
</tbody>
</table>

Accessories

Order as separate catalog number.

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC36</td>
<td>Hanger chain, 36"</td>
</tr>
<tr>
<td>ZACVH</td>
<td>Aircraft cable 10' (one pair)</td>
</tr>
<tr>
<td>ZLANG24T</td>
<td>Luma-tilt™ angle bracket for shelf or ledge mounting only</td>
</tr>
<tr>
<td>NPP16D</td>
<td>nLight® switching/dimming module</td>
</tr>
<tr>
<td>LSXR</td>
<td>Sensor Switch® LSXR occupancy sensor</td>
</tr>
<tr>
<td>ZSPRG</td>
<td>For 15/16" T-grid only</td>
</tr>
<tr>
<td>WGC24</td>
<td>24" wireguard, white</td>
</tr>
<tr>
<td>ZLR48A</td>
<td>48" wireguard, white</td>
</tr>
<tr>
<td>ZLR124 SYM UPL WH</td>
<td>24" symmetric reflector with uplight, white finish</td>
</tr>
<tr>
<td>ZLR124 SYM WH</td>
<td>24" symmetric reflector, white finish</td>
</tr>
<tr>
<td>ZLR44 SYM UPL WH</td>
<td>46" symmetric reflector with uplight, white finish</td>
</tr>
<tr>
<td>ZLR44 SYM WH</td>
<td>46" symmetric reflector, white finish</td>
</tr>
<tr>
<td>ZLR48 SYM UPL WH</td>
<td>48" asymmetric reflector, white finish</td>
</tr>
<tr>
<td>ZLR48 SYM WH</td>
<td>48" asymmetric reflector, white finish</td>
</tr>
<tr>
<td>ZLR48 ASY UPL WH</td>
<td>48" symmetric reflector with uplight, white finish</td>
</tr>
<tr>
<td>ZLR48 ASY WH</td>
<td>48" asymmetric reflector, white finish</td>
</tr>
<tr>
<td>ZLR48 ASY UPL WH</td>
<td>92" symmetric reflector with uplight, white finish</td>
</tr>
<tr>
<td>ZLR48 ASY WH</td>
<td>92" symmetric reflector, white finish</td>
</tr>
<tr>
<td>ZLR48 ASY UPL WH</td>
<td>96" symmetric reflector with uplight, white finish</td>
</tr>
<tr>
<td>ZLR48 ASY WH</td>
<td>96" symmetric reflector, white finish</td>
</tr>
</tbody>
</table>

Notes

2. See Operational Data on page 2 for actual lumens.
3. Not available with 0-10V dimming option.
5. See ordering information on page 3.
6. Not available with cordsets.
7. Must specify voltage. 120, 208, 240 or 277V.
8. Cordsets exit back of fixture unless OUTEND option is specified.
9. Order 2 for tandem double length fixtures (TZL1D).
ZL1D LED Striplight

Operational Data

<table>
<thead>
<tr>
<th>Nominal Lumen Package</th>
<th>Length (inches)</th>
<th>Delivered Lumen 3000 K CCT @ 77°F (25°C) ambient temperature</th>
<th>Delivered Lumen 3500 K CCT @ 77°F (25°C) ambient temperature</th>
<th>Delivered Lumen 4000 K CCT @ 77°F (25°C) ambient temperature</th>
<th>Delivered Lumen 5000 K CCT @ 77°F (25°C) ambient temperature</th>
<th>Wattage @ 120V/277V</th>
<th>Comparable Light Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500LM</td>
<td>24</td>
<td>1985 1679 2030 1675</td>
<td>2061 1707 2137 1745</td>
<td>2187 2307 2238 2158</td>
<td>2137 2307 2238 2158</td>
<td>17</td>
<td>1-lamp 17W T8</td>
</tr>
<tr>
<td>2500LM</td>
<td>24</td>
<td>2682 2187 2742 2264</td>
<td>2785 2307 2238 2158</td>
<td>2785 2307 2238 2158</td>
<td>2785 2307 2238 2158</td>
<td>22</td>
<td>1-lamp 17W T8</td>
</tr>
<tr>
<td>3500LM</td>
<td>24</td>
<td>4099 3341 4190 3419</td>
<td>4255 3524 4412 3603</td>
<td>4412 3603 4412 3603</td>
<td>4412 3603 4412 3603</td>
<td>36</td>
<td>1-lamp 32W T8, 1-lamp 54W T5H0, 50W HID</td>
</tr>
<tr>
<td>3000LM</td>
<td>48</td>
<td>3680 3163 3966 3274</td>
<td>4028 3336 4176 3410</td>
<td>4028 3336 4176 3410</td>
<td>4028 3336 4176 3410</td>
<td>30</td>
<td>1-lamp 32W T8, 1-lamp 54W T5H0, 50W HID</td>
</tr>
<tr>
<td>5000LM</td>
<td>48</td>
<td>5337 4351 5456 4504</td>
<td>5541 4589 5745 4691</td>
<td>5745 4691 5745 4691</td>
<td>5745 4691 5745 4691</td>
<td>41</td>
<td>2-lamp 32W T8, 1-lamp 54W T5H0, 70W HID</td>
</tr>
<tr>
<td>7000LM</td>
<td>48</td>
<td>7317 5965 7480 6175</td>
<td>7596 6291 7876 6431</td>
<td>7876 6431 7876 6431</td>
<td>7876 6431 7876 6431</td>
<td>59</td>
<td>3-lamp 32W T8, 2-lamp 54W T5H0, 100W HID</td>
</tr>
<tr>
<td>6000LM</td>
<td>96</td>
<td>8077 6585 8257 6816</td>
<td>8386 6945 8694 7099</td>
<td>8694 7099 8694 7099</td>
<td>8694 7099 8694 7099</td>
<td>60</td>
<td>3-lamp 32W T8, 2-lamp 54W T5H0, 100W HID</td>
</tr>
<tr>
<td>7000LM</td>
<td>96</td>
<td>11021 8985 11267 9301</td>
<td>11442 9427 11864 9687</td>
<td>11864 9687 11864 9687</td>
<td>11864 9687 11864 9687</td>
<td>81</td>
<td>4-lamp 32W T8, 2-lamp 54W T5H0, 150W HID</td>
</tr>
<tr>
<td>14000LM</td>
<td>96</td>
<td>19397 13253 15741 12995</td>
<td>15986 13240 16534 13534</td>
<td>15986 13240 16534 13534</td>
<td>15986 13240 16534 13534</td>
<td>121</td>
<td>4-lamp 32W T8, 3-lamp 54W T5H0, 150W HID</td>
</tr>
</tbody>
</table>

Dimensions

All dimensions are shown in inches (centimeters) unless otherwise noted.
Specifications subject to change without notice.

<table>
<thead>
<tr>
<th>PALLET DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>L24</td>
</tr>
<tr>
<td>L48</td>
</tr>
<tr>
<td>L96</td>
</tr>
</tbody>
</table>

WAYNE STATE UNIVERSITY
State Hall
Switchboard

PETER BASSO ASSOCIATES, INC.
PBA PROJECT NO. 2016.0222.00
Issued for Bids
June 25, 2019

LUMINAIRE PRODUCT DATA SHEETS
265700 - 3
ZL1D LED Striplight

REFLECTORS (Optional)

L24 Reflector

L48 Reflector

L96 Reflector

PHOTOMETRY

Please see www.lithonia.com
ZL1D LED Striplight

PRODUCT INFORMATION
Advanced plug-in system with three-circuit capability. Available on industrial and strip products and a variety of architectural products mounted in continuous rows. 1, 2, 3 and 4-lamp fixtures. PLR22 (2-circuit) and PLR33 (3-circuit) crossover harness switches hot circuit serving next fixture in row. Reduces fixture types on job for alternating circuit applications (see example below.)

Easy one-step installation, saves up to 35% on labor costs. Expanded switching flexibility helps save energy. Rows can be 50% longer with two-circuit systems. Polarized, lock-together nylon connectors prevent miswiring in the field. #12 THHN conductor, rated 600V, 90°C. White neutral wire included. Grounding accomplished by fixture in-row connectors.

CSA certified systems available with up to 2 circuits. G ground required.

Note: Specifications subject to change without notice.

Wiring

Typical Applications
• Multiple-circuit and single-circuit for longer continuous rows
• Multiple-circuit with alternating fixtures on separate circuits, 2-circuit (PLR 22) and 3-circuit (PLR 33)
• Multiple circuit with night-lights located along row as desired

TYPICAL APPLICATIONS

<table>
<thead>
<tr>
<th>PLR 3 C</th>
<th>PLR 3 C</th>
<th>PLR 3 C</th>
<th>PLR 3 C</th>
<th>PLR 2 B</th>
<th>PLR 2 B</th>
<th>PLR 2 B</th>
<th>PLR 1</th>
<th>PLR 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit A</td>
<td>Circuit B</td>
<td>Circuit A</td>
<td>Circuit B</td>
<td>Circuit A</td>
<td>Circuit B</td>
<td>Circuit A</td>
<td>Circuit B</td>
<td>Circuit A</td>
</tr>
<tr>
<td>Circuits to which ballast is connected</td>
<td>B</td>
<td>Red wire</td>
<td>UV</td>
<td>Low-voltage dimming</td>
<td>(blank)</td>
<td>No ground in PLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Black wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.

<table>
<thead>
<tr>
<th>Series</th>
<th>Number of hot wires</th>
<th>Branch circuits</th>
<th>Dimming</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLR22</td>
<td>1 Black</td>
<td>Circuits to which ballast is connected</td>
<td>B</td>
<td>Red wire</td>
</tr>
<tr>
<td>PLR33</td>
<td>2 Black and red</td>
<td>(blank)</td>
<td>A</td>
<td>Black wire</td>
</tr>
<tr>
<td></td>
<td>3 Black, red and blue</td>
<td></td>
<td>C</td>
<td>Blue wire</td>
</tr>
</tbody>
</table>

PLR Advanced 3-Circuit Plug-In

Typical Applications
• Multiple-circuit and single-circuit for longer continuous rows
• Multiple-circuit with alternating fixtures on separate circuits, 2-circuit (PLR 22) and 3-circuit (PLR 33)
• Multiple circuit with night-lights located along row as desired

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.

<table>
<thead>
<tr>
<th>LSXR</th>
<th>Passive Infrared Indoor Occupancy Sensor</th>
<th>Lens option</th>
<th>Dimming/photocell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(blank)</td>
<td>None</td>
<td>610 High and low mount 360°</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>High mount, 360°</td>
<td>650 High mount 360° and aisleway</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Low mount, 360°</td>
<td>1PK High and low mount 360° and aisleway</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>High mount aisleway</td>
<td>4PK All lenses</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Small motion, 360°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PASSIVE INFRARED OCCUPANCY SENSOR

FEATURES
• Four interchangeable lenses - high mount 360°, low mount 360°, high mount aisleway, and small motion 360°.
• Integrated mounting bracket drops lens down 3" from chase nipple - no bracket accessory required.
• 100% digital PIR detection - provides excellent RF immunity

Note: Specifications subject to change without notice.

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Max dim level</th>
<th>Min dim level</th>
<th>Lead length</th>
<th>Temp humidity</th>
<th>Default time delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>120-277 VAC</td>
<td>10 VDC</td>
<td>1 VDC</td>
<td>(blank) 54"</td>
<td>Blank</td>
<td>None</td>
</tr>
<tr>
<td>347-480 VAC</td>
<td>9 VDC</td>
<td>2 VDC</td>
<td>42"</td>
<td>Blank</td>
<td>15 minutes</td>
</tr>
<tr>
<td>(blank)</td>
<td>8 VDC</td>
<td>3 VDC</td>
<td>42"</td>
<td>Blank</td>
<td>15 minutes</td>
</tr>
<tr>
<td>(blank)</td>
<td>7 VDC</td>
<td>4 VDC</td>
<td>42"</td>
<td>Blank</td>
<td>15 minutes</td>
</tr>
<tr>
<td>(blank)</td>
<td>6 VDC</td>
<td>5 VDC</td>
<td>42"</td>
<td>Blank</td>
<td>15 minutes</td>
</tr>
</tbody>
</table>

For additional information see www.lithonia.com

Example: LSXR 10 ADC HVOLT 30M

PLR22 (2-circuit) and PLR33 (3-circuit) crossover harness switches hot circuit serving next fixture in row. Reduces fixture types on job for alternating circuit applications (see example below.)

Passive Infrared Indoor Occupancy Sensor

Example: LSXR 10 ADC HVOLT 30M

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.

<table>
<thead>
<tr>
<th>LSXR Series</th>
<th>Lens option</th>
<th>Dimming/photocell</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSXR</td>
<td>Passive Infrared Indoor Occupancy Sensor</td>
<td>(blank)</td>
</tr>
<tr>
<td>6</td>
<td>No lens</td>
<td>610 High and low mount 360°</td>
</tr>
<tr>
<td>6</td>
<td>High mount, 360°</td>
<td>650 High mount 360° and aisleway</td>
</tr>
<tr>
<td>10</td>
<td>Low mount, 360°</td>
<td>1PK High and low mount 360° and aisleway</td>
</tr>
<tr>
<td>50</td>
<td>High mount aisleway</td>
<td>4PK All lenses</td>
</tr>
<tr>
<td>9</td>
<td>Small motion, 360°</td>
<td></td>
</tr>
</tbody>
</table>

Passive Infrared Indoor Occupancy Sensor

Example: LSXR 10 ADC HVOLT 30M

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.

<table>
<thead>
<tr>
<th>LSXR Series</th>
<th>Lens option</th>
<th>Dimming/photocell</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSXR</td>
<td>Passive Infrared Indoor Occupancy Sensor</td>
<td>(blank)</td>
</tr>
<tr>
<td>6</td>
<td>No lens</td>
<td>610 High and low mount 360°</td>
</tr>
<tr>
<td>6</td>
<td>High mount, 360°</td>
<td>650 High mount 360° and aisleway</td>
</tr>
<tr>
<td>10</td>
<td>Low mount, 360°</td>
<td>1PK High and low mount 360° and aisleway</td>
</tr>
<tr>
<td>50</td>
<td>High mount aisleway</td>
<td>4PK All lenses</td>
</tr>
<tr>
<td>9</td>
<td>Small motion, 360°</td>
<td></td>
</tr>
</tbody>
</table>

For additional information see www.lithonia.com

Example: LSXR 10 ADC HVOLT 30M

ORDERING INFORMATION
Lead times will vary depending on options selected. Consult with your sales representative.

<table>
<thead>
<tr>
<th>LSXR Series</th>
<th>Lens option</th>
<th>Dimming/photocell</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSXR</td>
<td>Passive Infrared Indoor Occupancy Sensor</td>
<td>(blank)</td>
</tr>
<tr>
<td>6</td>
<td>No lens</td>
<td>610 High and low mount 360°</td>
</tr>
<tr>
<td>6</td>
<td>High mount, 360°</td>
<td>650 High mount 360° and aisleway</td>
</tr>
<tr>
<td>10</td>
<td>Low mount, 360°</td>
<td>1PK High and low mount 360° and aisleway</td>
</tr>
<tr>
<td>50</td>
<td>High mount aisleway</td>
<td>4PK All lenses</td>
</tr>
<tr>
<td>9</td>
<td>Small motion, 360°</td>
<td></td>
</tr>
</tbody>
</table>

For additional information see www.lithonia.com

Example: LSXR 10 ADC HVOLT 30M
ZL1D LED Striplight

OPTIONS AND ACCESSORIES

The Z-series fixture offers numerous options for almost every electrical and optical component, including a long list of field-installable accessories.

HANGER CHAIN
36" chain with Y hanger.
Order as: HC36

Z SPRING HANGER
Snap 'n' lock design requires no fasteners and can be used on T-grid ceiling or universal mounting systems.
Order as: ZSPRG

ZACVH HANGER
30' Aircraft cable with Y hanger.
Order as: ZACVH

ANGLE MOUNTING BRACKET
Luma-tilt™ angle bracket ships as a pair
Order as: ZLANGKTV

WIRE GUARD
Order as: WGZ24
WGZ48
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
 B. Related Sections include the following:
 1. Division 26 Section "Electrical General Requirements."

1.2 SUMMARY
 A. This Section includes design and installation of new devices onto an existing fire alarm system.
 B. Related Sections include the following:
 1. Division 8 Section "Door Hardware" for door closers and holders with associated smoke detectors, electric door locks, and release devices that interface with the fire alarm system.

1.3 DEFINITIONS
 A. FACP: Fire alarm control panel.
 B. LED: Light-emitting diode.
C. NICET: National Institute for Certification in Engineering Technologies.

D. Definitions in NFPA 72 apply to fire alarm terms used in this Section.

1.4 SYSTEM DESCRIPTION

A. Noncoded, addressable system; multiplexed signal transmission dedicated to fire alarm service only.
 1. Interface with existing fire alarm system.

B. Noncoded, analog-addressable system; automatic sensitivity control of certain smoke detectors; and
 multiplexed signal transmission dedicated to fire alarm service only.
 1. Interface with existing fire alarm system.

C. Fire alarm system shall consist of the following:
 1. System smoke detection in areas identified on plans

1.5 PERFORMANCE REQUIREMENTS

A. Comply with NFPA 72.

B. A complete functional system meeting the requirements of this specification, including alarm initiating
 devices and notification appliances at locations and ratings to meet the requirements of the Authorities
 Having Jurisdiction and all applicable codes shall be provided.

C. Coordinate and avoid conflicts with casework, markerboards, feature walls, and other areas where fire
 alarm devices would interfere with furnishings, finishes, etc.

D. Fire alarm system vendor shall provide sound pressure level calculations demonstrating compliance with
 NFPA 72 and establish quantities and tap settings of audible devices.

E. No additional charges for work or equipment required for a code compliant system approved by the
 Authority Having Jurisdiction will be allowed.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
 1. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire alarm system design.
 b. Fire alarm certified by NICET, minimum Level III.
 2. System Operation Description: Detailed description for this Project, including method of operation
 and supervision of each type of circuit and sequence of operations for manually and automatically
 initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are
 not acceptable.
 3. Device Address List: Include address descriptions that will appear on the FACP display.
 4. System riser diagram with device addresses, conduit sizes, and cable and wire types and sizes.
5. Wiring Diagrams: Power, signal, and control wiring. Include diagrams for equipment and for system with all terminals and interconnections identified. Show wiring color code.

6. Floor Plans: Indicate final outlet locations showing address of each addressable device. Show device layout, size and route of cable and conduits.

C. Qualification Data: For Installer.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For fire alarm system to include in emergency, operation, and maintenance manuals. Comply with NFPA 72, Appendix A, recommendations for Owner's manual. Include abbreviated operating instructions for mounting at the FACP.

F. Submittals to Authorities Having Jurisdiction: In addition to distribution requirements for submittals specified in Division 1 Section "Submittals," make an identical submittal to authorities having jurisdiction. To facilitate review, include copies of annotated Contract Drawings as needed to depict component locations. Resubmit if required to make clarifications or revisions to obtain approval. On receipt of comments from authorities having jurisdiction, submit them to Architect for review.

G. Documentation:
 1. Approval and Acceptance: Provide the "Record of Completion" form according to NFPA 72 to Owner, Architect, and Authorities Having Jurisdiction.
 2. Record of Completion Documents: Provide the "Permanent Records" according to NFPA 72 to Owner, Architect, and authorities having jurisdiction. Format of the written sequence of operation shall be the optional input/output matrix.
 a. Hard copies on paper to Owner, Architect, and Authorities Having Jurisdiction.
 b. Electronic media may be provided to Architect.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Work of this Section be performed by a UL-listed company.

C. Installer Qualifications: Personnel certified by NICET as Fire Alarm Level III.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Fire Alarm Service: Do not interrupt fire alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of fire alarm service.
 2. Do not proceed with interruption of fire alarm service without Owner written permission.
1.9 SEQUENCING AND SCHEDULING

A. Existing Fire Alarm Equipment: Maintain fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire alarm equipment "NOT IN SERVICE" until removed from the building.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. FACP and Equipment:
 a. Siemens Building Technologies, Inc.; a Cerberus Division.

2.2 EXISTING FIRE ALARM SYSTEM

A. Compatibility with Existing Equipment: Fire alarm system and components shall operate as an extension of an existing system.

2.3 SYSTEM SMOKE DETECTORS

A. General Description:

1. UL 268 listed, operating at 24-V dc, nominal.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
3. Multipurpose type, containing the following:
 a. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
 b. Piezoelectric sounder rated at 88 dBA at 10 feet according to UL 464.
 c. Heat sensor, combination rate-of-rise and fixed temperature.
4. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. Provide terminals in the fixed base for connection of building wiring.
5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type. Indicating detector has operated and power-on status.

B. Photoelectric Smoke Detectors:

1. Sensor: LED or infrared light source with matching silicon-cell receiver.
2. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.
2.4 WIRE AND CABLE

A. Wire and cable for fire alarm systems shall be UL listed and labeled as complying with NFPA 70, Article 760.

B. Fire alarm wire and cable shall be as specified by the system manufacturer including conductor gage, conductor quantity, conductor twists and shielding required to meet NFPA class and style performance specified.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Connecting to Existing Equipment: Verify that existing fire alarm system is operational before making changes or connections.

1. Connect new equipment to the existing control panel in the existing part of the building.
2. Expand, modify, and supplement the existing monitoring equipment as necessary to extend the existing monitoring functions to the new points.
3. New components shall be capable of merging with the existing configuration without degrading the performance of either system.

B. Smoke or Heat Detector Spacing:

1. Smooth ceiling spacing shall not exceed 30 feet.
2. Spacing of heat detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas, shall be determined according to Appendix A in NFPA 72.
3. Spacing of heat detectors shall be determined based on guidelines and recommendations in NFPA 72.

3.2 WIRING INSTALLATION

A. Install wiring according to the following:

1. NECA 1.
2. TIA/EIA 568-A.

B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceways and Boxes."

1. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. His system shall not be used for any other wire or cable.

C. Wiring Method:

1. Install fire alarm cable in conduit in mechanical rooms, loading docks and similar service spaces.
2. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
3. Signaling Line Circuits: Power-limited fire alarm cables may be installed in the same cable or raceway as signaling line circuits, if the system manufacturer permits it.

D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
E. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals according to Division 26 Section “Electrical Identification.”

3.4 FIELD QUALITY CONTROL
A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
B. Testing Agency: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
C. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:
D. Perform the following field tests and inspections and prepare test reports:
 1. Before requesting final approval of the installation, submit a written statement using the form for Record of Completion shown in NFPA 72.
 2. Perform each electrical test and visual and mechanical inspection listed in NFPA 72. Certify compliance with test parameters. All tests shall be conducted under the direct supervision of a NICET technician certified under the Fire Alarm Systems program at Level III.
 a. Include the existing system in tests and inspections.
 3. Visual Inspection: Conduct a visual inspection before any testing. Use as-built drawings and system documentation for the inspection. Identify improperly located, damaged, or nonfunctional equipment, and correct before beginning tests.
 4. Testing: Follow procedure and record results complying with requirements in NFPA 72.
 a. Detectors that are outside their marked sensitivity range shall be replaced.
 5. Test and Inspection Records: Prepare according to NFPA 72, including demonstration of sequences of operation by using the matrix-style form in Appendix A in NFPA 70.

3.5 PROGRAMMING
A. Coordinate final address descriptions for alarm, supervisory and trouble indication that appear on FACP and Annunciator displays with the Owners representative. This shall include all room names, room numbers, building areas for fire protection zones, exit door descriptions and similar items. This coordination shall take place and be implemented in the programming prior to Demonstration and Owner Training.
3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project outside normal occupancy hours for this purpose.

B. Follow-Up Tests and Inspections: After date of Substantial Completion, test the fire alarm system complying with testing and visual inspection requirements in NFPA 72. Perform tests and inspections listed for three monthly, and one quarterly, periods.

C. Semiannual Test and Inspection: Six months after date of Substantial Completion, test the fire alarm system complying with the testing and visual inspection requirements in NFPA 72. Perform tests and inspections listed for monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

D. Annual Test and Inspection: One year after date of Substantial Completion, test the fire alarm system complying with the testing and visual inspection requirements in NFPA 72. Perform tests and inspections listed for monthly, quarterly, semiannual, and annual periods. Use forms developed for initial tests and inspections.

3.7 WARRANTY

A. All newly installed equipment shall be warranted by the contractor for a period of one year following acceptance. The warranty shall include parts, labor, prompt field service, pickup and delivery.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the fire alarm system, appliances, and devices. Refer to Division 1 Section "Closeout Procedures."

END OF SECTION 28 3100