Wayne State University

Electrical Reliability Upgrades – Bid Pack 5 and 6

WSU Project Number Project No. 007-248857 (Chemistry Building), 089-248858 (Biological Science Building), 612-248862 (Scott Hall), 609-248861 (C.S Mott Center)

Prevailing Wage Work

FOR:
Board of Governors
Wayne State University
Detroit, Michigan

Owner’s Agent:
Robert Kuhn, Sr. Buyer
WSU – Procurement & Strategic Sourcing
5700 Cass, Suite 4200
Detroit, Michigan 48202
313-577-3712 / 313-577-3747 fax
ac6232@wayne.edu and copy ab3577@wayne.edu

Owner’s Representative:
Ekta Kamalia, Project Manager
Facilities Planning & Management
Design & Construction Services
5454 Cass
Wayne State University
Detroit, Michigan 48202

Consultant:
Commonwealth Associates, Inc
2700 West Argyle Street,
Jackson, MI 49202

January 22, 2015
TABLE OF CONTENTS

Title Page

Table of Contents

00001-1

00002-1

Division 0 - Bidding Requirements, Contract Forms, and Conditions of the Contract

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information for Bidders</td>
<td>00005-1 thru 00005-2</td>
</tr>
<tr>
<td>Instructions to Bidders</td>
<td>00100-1 thru 00100-5</td>
</tr>
<tr>
<td>Notice of Pre-Bid Conference</td>
<td>00250-1 thru 00250-2</td>
</tr>
<tr>
<td>Form of Proposal & Qualification Statement</td>
<td>00300-1 thru 00300-7</td>
</tr>
<tr>
<td>Prevailing Wage Rate Schedule</td>
<td>See Exhibit A</td>
</tr>
<tr>
<td>Payment Package Document Requirements</td>
<td>00430-1</td>
</tr>
<tr>
<td>Agreement between Contractor and Owner</td>
<td>00500-1 thru 00500-9</td>
</tr>
<tr>
<td>for Construction</td>
<td></td>
</tr>
<tr>
<td>Form of Guarantee</td>
<td>00510-1</td>
</tr>
<tr>
<td>General Conditions (A.I.A. A-201)</td>
<td>00700-1</td>
</tr>
<tr>
<td>WSU Supplementary General Conditions</td>
<td>00800-1 thru 00800-12</td>
</tr>
<tr>
<td>of the Contract for Construction</td>
<td></td>
</tr>
<tr>
<td>Drawings and Specifications</td>
<td>00850-1</td>
</tr>
</tbody>
</table>

Division 1 - General Requirements

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Requirements</td>
<td>01000-1 thru 01000-9</td>
</tr>
<tr>
<td>Summary of Work (Includes Scope of Work)</td>
<td>01010-1</td>
</tr>
</tbody>
</table>

Exhibit A

Prevailing Wage Rate Schedules
Wayne State University

Electrical Reliability Upgrades – Bid Pack 5 and 6
WSU Project No. Project No. 007-248857 –
Chemistry Building, 089-248858 – Biological Science Building,
612-248862- Scott Hall, 609-248861 – C.S Mott Center

INFORMATION FOR BIDDERS

OWNER: Board of Governors
Wayne State University

PROJECT: Electrical Reliability Upgrades – Bid Pack 5 and 6
Project No. Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall,609-248861 – C.S Mott Center

LOCATION: Wayne State University
Chemistry Building – 5101 Cass Avenue, Detroit, MI 48202
Biological Science Building – 5047 Gullen Mall, Detroit, MI 48202
Scott Hall Building – 540 East Canfield Avenue, Detroit, MI 48201
C.S Mott Center – 275 East Hancock, Detroit, MI 48201

OWNER’S AGENT: Robert Kuhn, Sr. Buyer
WSU – Procurement & Strategic Sourcing
5700 Cass, Suite 4200
Detroit, Michigan 48202
313-577-3712 / 313-577-3747 fax
ac6232@wayne.edu & copy ab3577@wayne.edu

OWNER’S REPRESENTATIVE: Ekta Kamalia, Project Manager
Facilities Planning & Management
Design & Construction Services
Wayne State University
5454 Cass Avenue
Detroit, Michigan 48202

Architect: Commonwealth Associates, Inc
2700 West Argyle Street,
Jackson, MI 49202

SPECIAL NOTE: Right to reject any and all proposals, either in whole or in part and to waive any irregularities therein is reserved by the Owner.

BIDS ADVERTISED: January 22, 2015

BIDDING: Bidding documents may be obtained by vendors from the University Purchasing Web Site at http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_bid.html beginning January 22, 2015. When visiting the Web Site, click on the “Construction” link in green. Copies of the RFP will not be available at the pre-proposal meeting.

MANDATORY Pre-Bid Conference: 1:00 pm, local time, January 28, 2015 to be held at Wayne State University – Scott Hall Building, 540 E Canfield Avenue, Conference Room No: 1140, Detroit, MI, 48202. Late Arrivals may not be permitted to submit bids.

OPTIONAL Second Walk Through: (if needed) To be determined at the conclusion of the pre-bid conference, by those in attendance.

DUE DATE FOR QUESTIONS: Due Date for questions shall be February 4, 2015 at 12:00 Noon. All questions must be reduced to writing and emailed to the attention of Robert Kuhn, Sr. Buyer at ac6232@wayne.edu, copy to Cynthia Branch, Buyer at: ab3577@wayne.edu.

Bids Due: Sealed proposals for lump-sum General Contract will be received at the office of the Procurement & Strategic Sourcing located at 5700 Cass Avenue, Suite 4200, Detroit, MI 48202 on February 11, 2015, until 2:00 p.m.
No public bid opening will be held.

Bid Qualification Meeting: Bidders must be available for bid prequalification meeting the day following the bid opening. The lowest qualified bidder will be contacted and requested to meet with Facilities Planning & Management at their office located at 5454 Cass Avenue, Detroit, MI 48202. During the prequalification, the Vendor must provide a Project Schedule and a Schedule of Values, including a list of Contractor’s suppliers, subcontractors and other qualifications.

An unsigned contract will be given to the successful Contractor at the conclusion of the Pre Award meeting, if all aspects of the bid are in order. The Contractor has 5 business days to return the contract to the Project Manager for University counter signature. The contractor must also submit a Performance Bond as outlined above and a Certificate of Insurance in the same 5 business day period. In the event the Contractor fails to return the documents in this 5 day period, the University reserves the right to award the contract to the next most responsive bidder.

All available information pertaining to this project will be posted to the Purchasing web site at http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_bid.html.

Information that is not posted to the website is not available/not known.
OWNER: Board of Governors
Wayne State University

PROJECT: Electrical Reliability Upgrades – Bid Pack 5 and 6
Project No. Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center

LOCATION: Wayne State University
Chemistry Building – 5101 Cass Avenue, Detroit, MI 48202
Biological Science Building – 5047 Gullen Mall, Detroit, MI 48202
Scott Hall Building – 540 East Canfield Avenue, Detroit, MI 48201
C.S Mott Center – 275 East Hancock, Detroit, MI 48201

OWNER’S AGENT: Robert Kuhn, Sr. Buyer
WSU – Procurement & Strategic Sourcing
5700 Cass, Suite 4200
Detroit, Michigan 48202
313-577-3712 / 313-577-3747 fax
ac6232@wayne.edu & copy ab3577@wayne.edu

1. PROPOSALS

A. The Purchasing Agent will receive sealed Proposals for the work as herein set forth at the place and until the time as stated in the "Information for Bidders", a copy of which is bound herewith in theses specifications. **No public bid opening will be held.**

B. Proposals shall be for a lump-sum General Contract for the entire work of the Project as provided in the Form of Proposal.

C. Proposals shall be submitted in duplicate on forms furnished with the Bidding documents. The forms must be fully filled out in ink or typewritten with the signature in longhand, and the completed forms shall be without alterations, interlineations, or erasures. Forms shall contain no recapitulations of the work to be done. Each proposal shall be delivered in an opaque sealed envelope, marked "PROPOSAL" AND SHALL BEAR THE NAME OF THE PROJECT AND THE NAME OF THE BIDDER. Proposals submitted by telephone or telegraph will not be accepted. Modifications by telephone or telegraph to previously submitted proposals will not be accepted.

D. **(revised 5-29-2009)** All base bids must be conforming to the detailed specifications and drawings provided by the University, including any Addenda issued. Voluntary Alternates will only be considered if the Contractor has also submitted a conforming base bid. Any stipulation of voluntary alternates or qualifications contrary to the Contract requirements made by the Bidder in or accompanying his proposal as a condition for the acceptance of the Contract will not be considered in the award of the Contract and will cause the rejection of the entire Proposal.

E. **The competency and responsibility of Bidders will be considered in making the award. The Owner does not obligate himself to accept the lowest or any other bids. The Owner reserves the right to reject any and all bids and to waive any informalities in the Proposals.**

2. PROPOSAL GUARANTEE **(revised 3-22-2012)**

A. A certified check or bank draft payable to the Owner, or satisfactory Bid Bond executed by the Bidder and Surety Company, in an amount equal to not less than five percent (5%) of the maximum proposal amount shall be submitted with each Proposal, which amount may be forfeited to the Board of Governors, Wayne State University, if the successful Bidder refuses to enter into a Contract within ninety (90) days from receipt of Proposals.
B. Bond must be issued by a Surety Company with an “A rating as denoted in the AM Best Key Rating Guide”

C. The bid deposit of all bidders except the lowest three will be returned within three (3) days after the bids are opened. After the formal Contract and bonds are approved, the bid deposit will be returned to the lowest three bidders, except when forfeited.

D. Bid bonds shall be accompanied by a Power of Attorney authorizing the signer of the bond to do so on behalf of the Surety Company.

E. Withdrawal of Proposals is prohibited for a period of ninety (90) days after the actual date of opening thereof.

3. CONTRACT SECURITY (revised 3-22-2012)

A. The successful Bidder will be required to furnish a Performance Bond and Labor and Material Payment bond in an amount equal to 100% of the contract award amount, and include such cost in the Proposal, complying with the laws of the State of Michigan. The graduated formula no longer applies.

B. Performance Bond and Labor and Material Payment Bond shall be from a surety company acceptable to the Owner and made payable as follows:

 (1) A bond for 100% of the contract award amount to the Board of Governors of Wayne State University, and guaranteeing the payment of all subcontractors and all indebtedness incurred for labor, materials, or any cause whatsoever on account of the Contractor in accordance with the laws of the State of Michigan relating to such bonds.

 (2) A bond for 100% of the contract award amount to the Board of Governors of Wayne State University to guarantee and insure the completion of work according to the Contract.

C. The only acceptable Performance Bond shall be the AIA A312 – 2010.

D. Bond must be issued by a Surety Company with an “A rating as denoted in the AM Best Key Rating Guide”.

4. BOND CLARIFICATION

For bids below $50,000.00,

A. Bid bond will not be required.
B. Performance Bond will not be required.

5. INSPECTION

A. Before submitting his Proposal, each Bidder shall be held to have visited the site of the proposed work and to have familiarized himself as to all existing conditions affecting the execution of the work in accordance with the Contract Documents. No allowance or extra consideration on behalf of the Contractor will subsequently be made by reason of his failure to observe the Conditions or on behalf of any subcontractor for the same reason.

6. EXPLANATION TO BIDDERS AND ADDENDA

A. Neither the Owner nor Representative nor Purchasing Agent will give verbal answers to any inquiries regarding the meaning of drawings and specifications, and any verbal statement regarding same by any person, previous to the award, shall be unauthoritative.
B. Any explanation desired by Bidders must be requested of the Purchasing Agent in writing, and if explanation is necessary, a reply will be made in the form of an Addendum, a copy of which will be forwarded to each Bidder registered on the Bidders’ List maintained by Procurement & Strategic Sourcing.

C. All addenda issued to Bidders prior to date of receipt of Proposals shall become a part of these Specifications, and all proposals are to include the work therein described.

7. INTERPRETATION OF CONTRACT DOCUMENTS

A. If any person contemplating submitting a bid for the proposed Contract is in doubt as to the true meaning of any part of the drawings, specifications, or other Contract Documents, he may submit to the Purchasing Agent, a written request for an interpretation thereof. The person submitting the request will be responsible for its prompt delivery. Any interpretation of the Contract Documents will be made by an addendum duly issued. A copy of such addendum will be mailed and delivered to each registered Bidder. Each proposal submitted shall list all addenda, by numbers, which have been received prior to the time scheduled for receipt of proposal.

8. SUBSTITUTION OF MATERIALS AND EQUIPMENT*

A. Whenever a material, article or piece of equipment is identified on the Drawings or in the Specifications by reference to manufacturers’ or vendors’ names, trade names, catalog numbers, or the like, it is so identified for the purpose of establishing a standard, and any material, article, or piece of equipment of other manufacturers or vendors which will perform adequately the duties imposed by the general design will be considered equally acceptable provided that the material, article, or piece of equipment so proposed is, in the opinion of the Architect, of equal substance, appearance and function. It shall not be purchased or installed by the Contractor without the Architect’s written approval.

9. TAXES

A. The Bidder shall include in his lump sum proposal and make payment of all Federal, State, County and Municipal taxes, including Michigan State Sales and Use Taxes, now in force or which may be enacted during the progress and completion of the work covered.

10. REQUIREMENTS FOR SIGNING PROPOSALS AND CONTRACTS

A. The following requirements must be observed in the signing of proposals that are submitted:

(1) Proposals that are not signed by individuals making them shall have attached thereto a Power of Attorney, evidencing the authority to sign the Proposal in the name of the person for whom it is signed.

(2) Proposals that are signed for partnership shall be signed by all of the partners or by an Attorney-in-Fact. If signed by an Attorney-in-Fact, there must be attached to the Proposal a Power of Attorney evidencing authority to sign the Proposal, executed by the partners.

(3) Proposals that are signed for a corporation shall have the correct corporate name thereof and the signature of the President or other authorized officer of the corporation, manually written in the line of the Form of Proposal following the words “signed by”. If such a proposal is signed by an official other than the President of the Corporation, a certified copy of resolution of the Board of Directors, evidencing the authority of such official to sign the bid, shall be attached to it. Such proposal shall also bear the attesting signature of the Secretary of the Corporation and the impression of the corporate seal.

11. QUALIFICATIONS OF BIDDERS
A. The Owner may request each of the three (3) low bidders to submit information necessary to satisfy the Owner that the Bidder is adequately prepared to fulfill the Contract. Such information may include past performance records, list of available personnel, plant and equipment, description of work that will be done simultaneously with the Owner's Project, financial statement, or any other pertinent information. This information and such other information as may be requested will be used in determining whether a Bidder is qualified to perform the work required and is responsible and reliable.

12. SPECIAL REQUIREMENTS

A. The attention of all Bidders is called to the General Conditions, Supplementary General Conditions, and Special Conditions, of which all are a part of the Specifications covering all work, including Subcontracts, materials, etc. Special attention is called to those portions dealing with Labor Standards, including wages, fringe benefits, Equal Employment Opportunities, and Liquidated Damages.

B. Prior to award of the project, the apparent low bidder will be required to produce a schedule of values which will include the proposed subcontractors for each division of work and whether the subcontractor is signatory or non-signatory. A contract will not be issued to the apparent low bidder until this document is provided. A contractor will have one week to produce this document. If the required document is not received within this time, the bidder will be disqualified.

A. The Proposal shall be deemed as having been accepted when a copy of the Contract (fully executed by both the vendor and the appropriate signatory authority for the University), with any/all Alternates, Addenda, and Pre-Contract Bulletins, as issued by the office or agent of the Owner has been duly received by the Contractor. After signing the Contracts, the Contractor shall then return all copies, plus any required bonds and certificates of insurance, to the office of the Owner's Representative, at 5454 Cass, Wayne State University, Detroit, MI 48202. Construction will begin when the fully-executed contract has been returned to the Contractor.

14. TIME OF STARTING AND COMPLETION

A. It is understood that the work is to be carried through to substantial completion with the utmost speed consistent with good workmanship and to meet the established start and completion dates.

B. The Contractor shall begin work under the Contract without delay, upon receipt of a fully-executed contract from the Owner, and shall substantially complete the project ready for unobstructed occupancy and use of the Owner for the purposes intended within the completion time stated in the Contract.

C. The Contractor shall, immediately upon receipt of fully-executed contract, schedule his work and expedite deliveries of materials and performance of the subcontractors to maintain the necessary pace for start and completion on the aforementioned dates.

15. BIDDING DOCUMENTS

A. Bid specifications are not available at the University, but are available beginning January 22, 2015 through Wayne State University Procurement & Strategic Sourcing's Website for Advertised Bids: http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_bid.html. The plans for this project can be viewed in advance and/or printed from the above website. Copies of the RFP will not be available at the pre-proposal meeting.

B. DOCUMENTS ON FILE (revised 12-2007)
Wayne State University Procurement & Strategic Sourcing’s Website. All available information pertaining to this project will be posted to the Purchasing website at http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_bid.html.

Information that is not posted to the website is not available/not known.

Notification of this Bid Opportunity has been sent to Dunn Blue (for purchase of Bid Documents only), Dodge Reports, Reed Construction, Construction News and the Construction Association of Michigan (CAM).

Please note: Effective December 1, 2007, bid notices will be sent only to those Vendors registered to receive them via our Bid Opportunities list serve. To register, to http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_bid.html, and click on the “Join our Listserve” link at the top of the page.
NOTICE OF MANDATORY PRE-BID CONFERENCE

PROJECT: Electrical Reliability Upgrades – Bid Pack 5 and 6

PROJECT NOS.: 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center

It is MANDATORY that each Contractor proposing to bid on this work must attend a pre-bid conference at the following location:

Wayne State University
Scott Hall Building, 540 E Canfield Avenue, Conference Room No: 1140
Detroit MI 48202

1:00 pm, local time, January 28, 2015

The purpose of this conference is to clarify the procedures, scope of work, and to identify any omissions and/or inconsistencies that may impede preparation and submission of representative competitive bids.

An attendance list shall be prepared and minutes of the conference shall be furnished to all those attending.

Any clarifications or corrections that cannot be made at the conference will be by Addendum.

For your convenience a map of the University and appropriate parking lots can be downloaded and printed from: http://campusmap.wayne.edu. Guest parking in any of the University student and guest lots is $7.00. A detailed list of Cash & Coin operated lots can be viewed at http://purchasing.wayne.edu/cash_and_credit_card_lots.php. Cash lots dispense change in quarters. Due to time constraints, Vendors are encouraged to avoid parking at meters on the street (especially blue “handicapped” meters).

All available information pertaining to this project will be posted to the Purchasing web site at http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_bid.html. Information that is not posted to the website is not available/not known.
WAYNE STATE UNIVERSITY

Electrical Reliability Upgrades – Bid Pack 5 and 6
WSU Project No. Project No. 007-248857 – Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center

AGENDA

I. Welcome and Introductions
 A. Wayne State University Representatives
 B. Vendor Representatives
 C. Sign in Sheet- be sure to include your fax number and email address (LEGIBLY) on the sign in sheet.

II. Brief Overview of Wayne State University
 A. Purpose and Intent of RFP.
 B. Detailed review of the RFP and the requirements for a qualified response.
 C. Review of all pertinent dates and forms that are REQUIRED for a qualified response.

III. Vendor Questions/Concerns/Issues
 A. Questions that can be answered directly by the appropriate person in this meeting will be answered and both question and answer will be recorded in the minutes of the meeting.
 B. Questions that need to be researched will be answered and a nature of clarification will be emailed to the appropriate ListServ. See http://www.forms.purchasing.wayne.edu/Adv_bid/Adv_Bid_Listserve.html for a list of ListServ Bid Lists.
 C. Minutes will be emailed to all participants of the meeting within a reasonable amount of time. (be sure to include your email address/addresses on the sign in sheet)
 D. Questions and concerns that come up after this meeting are to be addressed to Robert Kuhn, Procurement & Strategic Sourcing. Discussion with other University members is seriously discouraged and could lead to disqualification from further consideration. All questions and answers will be recorded and emailed to all participants of the RFP.
 E. Due date for questions is February 4, 2015, 12:00 noon.

IV. Proposal Due Date- February 11, 2015, 2:00 p.m.

V. Final Comments

VI. Adjourn
VENDOR NAME

GENERAL CONTRACT - PROPOSAL FORM (revised 1 - 2011)

Please Note – Vendors must Pre-qualify themselves when responding to this bid opportunity. Our Prequalification questions can be found on page 4 of this section.

OWNER: Board of Governors
Wayne State University

PROJECT: Electrical Reliability Upgrades – Bid Pack 5 and 6

PROJECT NO.: WSU PROJECT NO. Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center

PROJECT TYPE: Electrical, General Construction Work

PURCHASING AGENT: Robert Kuhn, Sr. Buyer
WSU – Procurement & Strategic Sourcing
5700 Cass, Suite 4200
Detroit, Michigan 48202
313-577-3712/ 313-577-3747 fax
ac6232@wayne.edu & copy ab3577@wayne.edu

OWNER'S REPRESENTATIVE: Ekta Kamalia, Project Manager
Design & Construction Services
Facilities Planning & Management
Wayne State University
5454 Cass Avenue
Detroit, Michigan 48202

TO: Board of Governors
Wayne State University
Detroit, Michigan

PLEASE NOTE: All bidders must provide a bid in all categories listed below to be considered. WSU reserves the right to award the projects individually to separate contractors or together to one contractor.

COMBINED BASE PROPOSAL FOR BID 5 AND 6 PROJECTS (WSU Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center):

The undersigned agrees to enter into an Agreement to complete the entire work of the Electrical Reliability Upgrades – Bid Pack 5 and 6 projects (WSU Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center) in accordance with the Bidding Documents for the following amounts (INCLUDE ALLOWANCES):

$ Dollars

FORM OF PROPOSAL FOR THE GENERAL CONTRACT 00300 - 1
WAYNE STATE UNIVERSITY

Electrical Reliability Upgrades – Bid Pack 5 and 6
WSU Project No. Project No. 007-248857 –
Chemistry Building, 089-248858 – Biological Science Building,
612-248862- Scott Hall, 609-248861 – C.S Mott Center

BASE PROPOSAL for 007-248857 (Chemistry Building):

The undersigned agrees to enter into an Agreement to complete the entire work of the
Electrical Reliability Upgrades – Bid Package 5 project (WSU Project No. 007-248857
Chemistry Building) in accordance with the Bidding Documents for the following amounts
(INCLUDE ALLOWANCE):

$ 000.00

BASE PROPOSAL for 089-248858 (Biological Science Building):

The undersigned agrees to enter into an Agreement to complete the entire work of the
Electrical Reliability Upgrades – Bid Package 5 project (WSU Project No. 089-248858
Biological Science Building) in accordance with the Bidding Documents for the following
amounts (INCLUDE):

$ 000.00

BASE PROPOSAL for 612-248862 (Scott Hall):

The undersigned agrees to enter into an Agreement to complete the entire work of the
Electrical Reliability Upgrades – Bid Package 6 project (WSU Project No. 612-
248862) in accordance with the Bidding Documents for the following amounts (Include
Allowance):

$ 000.00

BASE PROPOSAL for 609-248861 (C.S Mott Center):

The undersigned agrees to enter into an Agreement to complete the entire work of the
Electrical Reliability Upgrades – Bid Package 6 project (WSU Project No. 609-
248861) in accordance with the Bidding Documents for the following amounts (Include
Allowance):

$ 000.00

Allowance for 007-248857 (Chemistry Building):

Electrical Reliability Upgrades – Bid Package 5 project (WSU Project No. 007-
248857 (Chemistry Building) base bid shall include an allowance to cover costs associated
with premium time associated with overtime work per Specification Section 012100. The allowance
expenditure must be accounted for and approved in advance by WSU during the construction
phase of the project, unused allowances will be returned to the University.

$ 5,000.00
Allowance for 089-248858 (Biological Science Building):

Electrical Reliability Upgrades – Bid Package 5 project (WSU Project No. 089-248858 (Biological Science Building) base bid shall include an allowance to cover costs associated with premium time associated with overtime work per Specification Section 012100. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

$ 5,000.00

Allowance for 612-248862 (Scott Hall):

Electrical Reliability Upgrades – Bid Package 6 project (WSU Project No. 612-248862 (Scott Hall Building) base bid shall include an allowance to cover costs associated with premium time associated with overtime work per Specification Section 012100. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

$ 5,000.00

Allowance for 609-248861 (C.S Mott Center):

Electrical Reliability Upgrades – Bid Package 6 project (WSU Project No. 609-248861 (C.S Mott Center) base bid shall include an allowance to cover costs associated with premium time associated with overtime work per Specification Section 012100. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

$ 5,000.00

LAWN REPLACEMENT:

The undersigned agrees that, in the event of existing lawn or landscaping damage, due to the Contractor's work, that has not been properly addressed and repaired to the satisfaction of the University, the University may repair/replace the lawn and/or landscaping, and that the expense will be at a unit cost of $10.00 per square yard for lawn, and landscaping at a rate of 1.5 times the cost of said repairs, the full cost of which shall be reimbursed by the contractor.

CONTRACT CHANGE ORDERS: (revised 4-01-2011)

The undersigned agrees to the following pricing formula and rates for changes in the contract work:

1. For subcontract work, Contractor's markup for handling, overhead, profit and bonding on subcontractors sell price, shall not exceed 5%.

1.1. For subcontract work that is provided on a time and material basis, the subcontractor shall be permitted a single markup for handling, overhead, profit and bonding of 5%. When a markup is identified in the subcontractor's hourly labor rate, additional markup on labor is not permitted.

1.1.1 For changes that are based upon a lump sum value, subcontractor shall provide all labor and material back-ups to ensure that duplicative charges are avoided and authorized markups for OH&P can be confirmed.
WAYNE STATE UNIVERSITY

Electrical Reliability Upgrades – Bid Pack 5 and 6
WSU Project No. Project No. 007-248857 – Chemistry Building, 089-248858 – Biological Science Building,
612-248862- Scott Hall, 609-248861 – C.S Mott Center

2. For work by his own organization, Contractor's markup for job* and general overhead, profit and bonding shall not exceed 5% of the net labor** and material costs.

Within 14 days of the project's contract execution Contractor shall provide to the Owner; Subcontractor's hourly labor rate breakdown details. This requirement shall extend to the lowest level of subcontractor participation.

* Job and general overhead includes supervision and executive expenses; use charges on small tools, scaffolding, blocking, shores, appliances, etc., and other miscellaneous job expenses.

** Net labor cost is the sum of the base wages, fringe benefits established by governing trade organizations, applicable payroll taxes, and increased expense for contractor's liability insurance (Workman's Compensation, P.L. and P.D.).

TIME OF COMPLETION: (revised 4-01-2011)
The Contract is expected to be fully executed on or about 25 calendar days after successful bidder qualification and recommendation of award. The undersigned agrees to start construction immediately after receipt of a fully executed contract, and to complete the work as follows:

Substantial Completion will be completed no later than August 28, 2015.

LIQUIDATED DAMAGES: It is understood and agreed that, if project is not completed within the time specified in the contract plus any extension of time allowed pursuant thereto, the actual damages sustained by the Owner because of any such delay, will be uncertain and difficult to ascertain, and it is agreed that the reasonable foreseeable value of the use of said project by Owner would be the sum of $500.00, Five Hundred Dollars per day, and therefore the contractor shall pay as liquidated damages to the Owner the sum of $500.00, Five Hundred Dollars per day for each day's delay in substantially completing said project beyond the time specified in the Contract and any extensions of time allowed thereunder.

TAXES: The undersigned acknowledges that prices stated above include all applicable taxes of whatever character or description. Michigan State Sales Tax is applicable to the work. Bidder understands that the Owner reserves the right to reject any or all bids and to waive informalities or irregularities therein.

ADDENDA: The undersigned affirms that the cost of all work covered by the following Addenda are included in the lump sum price of this proposal.

Addendum No. Date Addendum No. Date

CONTRACTOR'S PREQUALIFICATION STATEMENT & QUESTIONNAIRE:

Our Minimum Requirements for Construction Bids are:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Small Project</th>
<th>Medium Project</th>
<th>Large Project</th>
<th>Very Large Project</th>
</tr>
</thead>
</table>

WSU considers this project: Electrical, General Construction Work.
<table>
<thead>
<tr>
<th>EMR Rating (Experience Modification Rating)</th>
<th>bid less than $50,000</th>
<th>bid between $50,001 and $250,000</th>
<th>bid between $250,001 and $2 million</th>
<th>bid greater than $2 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 or Less</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bondable Vendor</th>
<th>N.A.</th>
<th>Required</th>
<th>Required</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bondable Vendor</td>
<td>N.A.</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length of Time in Construction Business</th>
<th>2 Years</th>
<th>3 Years</th>
<th>5 Years</th>
<th>5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Time in Construction Business</td>
<td>2 Years</td>
<td>3 Years</td>
<td>5 Years</td>
<td>5 Years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demonstrated Experience in Projects Similar in Scope and Price in the last 3 years</th>
<th>1 or more</th>
<th>1 or more</th>
<th>2 or more</th>
<th>3 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrated Experience in Projects Similar in Scope and Price in the last 3 years</td>
<td>1 or more</td>
<td>1 or more</td>
<td>2 or more</td>
<td>3 or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsuccessful Projects on Campus in last 3 years</th>
<th>None Allowed</th>
<th>None Allowed</th>
<th>None Allowed</th>
<th>None Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsuccessful Projects on Campus in last 3 years</td>
<td>None Allowed</td>
<td>None Allowed</td>
<td>None Allowed</td>
<td>None Allowed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failure to comply with Prevailing Wage and/or Project Labor requirements</th>
<th>None Allowed</th>
<th>None Allowed</th>
<th>None Allowed</th>
<th>None Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to comply with Prevailing Wage and/or Project Labor requirements</td>
<td>None Allowed</td>
<td>None Allowed</td>
<td>None Allowed</td>
<td>None Allowed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Withdrawn University Bid (with or without Bond forfeiture) within the last 3 years</th>
<th>1 Year</th>
<th>2 Years</th>
<th>3 Years</th>
<th>3 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawn University Bid (with or without Bond forfeiture) within the last 3 years **</td>
<td>1 Year</td>
<td>2 Years</td>
<td>3 Years</td>
<td>3 Years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company currently not in Chapter 11 of the US Bankruptcy Code</th>
<th>1 Year</th>
<th>2 Years</th>
<th>3 Years</th>
<th>3 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company currently not in Chapter 11 of the US Bankruptcy Code **</td>
<td>1 Year</td>
<td>2 Years</td>
<td>3 Years</td>
<td>3 Years</td>
</tr>
</tbody>
</table>

** Withdrawal of a bid is subject to the University suspension policy, for a period up to one year.

Contractors must complete the following information to determine their eligibility to participate in this bid. This information is required with your Bid to the University.

Failure to complete this form in its entirety will result in your bid being disqualified.

Check one of the following on the makeup of your company:

- [] Corporation
- [] Individual
- [] Partnership
- [] Joint Venture
- [] Other (Explain)

__

1. How many years has your organization been in business as a contractor? _______________________
2. How many years has your organization been in business under its present business name? _________
3. List states in which your organization is legally qualified to do business. _______________________

__

4. Provide the Name and Address of your Liability Insurance Carrier. ___________________________
5. What is your current EMR Rating?
The minimum requirement is an EMR Rating of 1.0 or less for all projects. Bidders with a rating higher than 1.0 understand that their bid may be disqualified, at the sole discretion of the University.

6. What percentage of work performed on projects are by company employees; excluding any hired subcontracting and outsourced relationships, for the bid submitted? _______ %

7. What percentage of work performed on your companies behalf are by subcontracted business relationships; disallowing 1099 contracting work forces, for the bid submitted? _______ %

8. Have you ever failed to complete any work awarded to you? If so, attach a separate sheet of explanation. Include the name of the Project, the customer, the dates of the work, and the amount of the contract?

9. Have you withdrawn a bid after a University bid opening and/or refused to enter into a contract with the University upon notification of award within the last 3 years? If so, state the Project Name and Number, and the date of bid submission below.

10. Has any officer or partner of your organization ever been an officer or partner of another organization that failed to complete a construction contract? If so, attach a separate sheet of explanation.

11. List the construction experience of the principals and superintendents of your company.
Name: __________________________________ Title: __________________________________

Name: __________________________________ Title: __________________________________

Name: __________________________________ Title: __________________________________

12. List the construction Projects, and approximate dates, when you performed work similar in Scope to this project.
Project: __________________________________ Owner: _________________________________
Contract Amount: ___________________________ Date Completed: _________________________
Project: __________________________________ Owner: _________________________________
Contract Amount: ___________________________ Date Completed: _________________________
Project: __________________________________ Owner: _________________________________
13. List the construction Projects, and approximate dates, when you performed work similar in Dollar Amount to this project.

Project: __________________________ Owner: __________________________
Contract Amount: __________________________ Date Completed: __________________________

Project: __________________________ Owner: __________________________
Contract Amount: __________________________ Date Completed: __________________________

Project: __________________________ Owner: __________________________
Contract Amount: __________________________ Date Completed: __________________________

14. Is your Company “bondable”? Yes ______ No ______

15. What is your present bonding capacity? $ __________________________

16. Who is your bonding agent?
NAME: __________________________
ADDRESS: __________________________
PHONE: __________________________
CONTACT: __________________________

17. Does your company agree to provide financial reports to the University upon request? Failure to agree may result in disqualification of your bid. Yes ______ No ______

18. Does your company agree that all of the Terms and Conditions of this RFP and Vendor’s Response Proposal become part of any ensuing agreement? Yes ______ No ______

19. Does your company agree to execute a contract containing the clauses shown in Section 00500 “Agreement Between Contractor and Owner for Construction”? Yes ______ No ______

If “No”, clearly note any exceptions to any information contained in the contract documents and include with your proposal.

20. Did your company quote based upon Prevailing Wage Rates? Yes ______ No ______

Note: Contractors submitting proposals for this project may, at the discretion of the University, be required to submit references including contact information to be used to assist in the post bid evaluation process for the subject project.

ACKNOWLEDGEMENT OF MINIMUM QUALIFICATIONS:
The undersigned has read and understands the minimum qualifications for University construction projects, and has completed the Prequalification section completely and accurately. The undersigned understands that a contractor, who fails to meet the minimum qualifications in the category identified for this project, will be disqualified from consideration for the project.

ACCEPTANCE OF PROPOSAL:
The undersigned agrees to execute a Contract, being the Wayne State University standard form titled “Agreement Between Contractor and Owner for Construction” (see section 00500 of the bid documents), provided that we are notified of the
The undersigned below understands that the bid will be disqualified if the Prequalification information above is not completed in its entirety.

NAME OF COMPANY: __

OFFICE ADDRESS: __

PHONE NUMBER: ______________________ DATE______________

FAX NUMBER: __

SIGNED BY: __

Signature

(Please print or type name here)

TITLE: ______________________________________

EMAIL ADDRESS: ______________________ @__________

acceptance of our Proposal within sixty (60) days of the date set for the opening thereof.
PREVAILING WAGE RATE SCHEDULE (revised 4-05-2010)

A. See also Page 00100-4 Section 12.B

B. Wayne State University requires all project contractors, including subcontractors, who provide labor on University projects to compensate at a rate no less than prevailing wage rates.

C. The rates of wages and fringe benefits to be paid to each class of laborers and mechanics by each VENDOR and subcontractor(s) (if any) shall be not less than the wage and fringe benefit rates prevailing in Wayne County, Michigan, as determined by the United States Secretary of Labor. Individually contracted labor commonly referred to as “1099 Workers” and subcontractors using 1099 workers are not acceptable for work related to this project.

D. To maintain compliance with State of Michigan Ordinances, Certified Payroll must be provided for each of the contractor's or subcontractor’s payroll periods for work performed on this project. Certified Payroll should accompany all Pay Applications. Failure to provide certified payroll will constitute breach of contract, and pay applications will be returned unpaid, and remain so until satisfactory supporting documents are provided.

A Prevailing Wage Rate Schedule has been issued from the State of Michigan that is enclosed in this section.

Additional information can be found on the University Procurement & Strategic Sourcing’s web site at the following URL address:

http://purchasing.wayne.edu/vendors/wage-rates.php

If you have any questions, or require rates for additional classifications, please contact:

Michigan Department of Consumer & Industry Services,
Bureau of Safety and Regulation, Wage and Hour Division,
7150 Harris Drive,
P.O. Box 30476,
Lansing, Michigan 48909-7976

http://www.michigan.gov/dleg/0,1607,7-154-27673_27706---,00.html

F. Wayne State University's Prevailing Wage Requirements:

When compensation will be paid under prevailing wage requirements, the University shall require the following:

A. The contractor shall obtain and keep posted on the work site, in a conspicuous place, a copy of all current prevailing wage and fringe benefit rates.

B. The contractor shall obtain and keep an accurate record showing the name and occupation of and the actual wages and benefits paid to each laborer and mechanic employed in connection with this contract.

C. The contractor shall submit a completed certified payroll document [U.S. Department of Labor Form WH 347] verifying and confirming the prevailing wage and benefits rates for all employees and subcontractors for each payroll period for work performed on this project. The contractor shall include copies of pay stubs for all employee or contract labor payments related to Wayne State University work. The certified payroll form can be downloaded from the Department of Labor website at http://www.dol.gov/whd/forms/wh347.pdf.

D. A properly executed sworn statement is required from all tiers of contractors, sub-contractors and suppliers which provide services or product of $1,000.00 or greater. Sworn statements must accompany applications for payment. All listed parties on a sworn statement and as a subcontractor must submit Partial or Full Conditional Waivers for the amounts invoiced on the payment application. A copy of the acceptable WSU Sworn Statement and Waiver will be provided to the awarded contractor.
E. Apprentices for a skilled trade must provide proof of participation in a Certified Apprenticeship Program and the level of hours completed in the program.

F. Daily project sign-in sheets and field reports for the project must be turned in weekly.

Note: Contractor invoices WILL NOT be processed until all listed certified payroll documents are received.

G. If the VENDOR or subcontractor fails to pay the prevailing rates of wages and fringe benefits and does not cure such failure within 10 days after notice to do so by the UNIVERSITY, the UNIVERSITY shall have the right, at its option, to do any or all of the following:

1. Withhold all or any portion of payments due the VENDOR as may be considered necessary by the UNIVERSITY to pay laborers and mechanics the difference between the rates of wages and fringe benefits required by this contract and the actual wages and fringe benefits paid;

2. Terminate this contract and proceed to complete the contract by separate agreement with another vendor or otherwise, in which case the VENDOR and its sureties shall be liable to the UNIVERSITY for any excess costs incurred by the UNIVERSITY.

3. Propose to the Director of Purchasing that the Vendor be considered for Debarment in accordance with the University’s Debarment Policy, found on our website at http://purchasing.wayne.edu/docs/appm28.pdf

Terms identical or substantially similar to this section of this RFP shall be included in any contract or subcontract pertaining to this project.

H. The current applicable prevailing wage rates as identified by the State of Michigan Department of Consumer & Industry Services, Bureau of Safety and Regulation, Wage and Hour Division are attached. Refer to item C above if additional information is required.

I. Prior to award of the project, the apparent low bidder will be required to produce a schedule of values which will include the proposed subcontractors for each division of work and whether the subcontractor is signatory or non-signatory. A letter of intent or contract will not be issued to the apparent low bidder until this document is provided. The apparent low bidder will have one week to produce this document. If the required document is not received within this time, the bidder will be disqualified, and the next low bidder will be required to provide this schedule of values.

SEE ATTACHED Exhibit A: STATE PREVAILING WAGE INFORMATION
WAYNE STATE UNIVERSITY

PAYMENT PACKAGE DOCUMENT REQUIREMENTS (Revised 5-06-2011):

Review and comply with Section 410 of Bid Front End Documents.
Review and comply with Article 15 of the Supplemental General Conditions.

AIA DOCUMENT G702 & G703 – (or facsimile thereof) Payment Application Checklist:

- The Correct Project Name – Found on your contract.
- The Correct Project Number – Found on your contract.
- Purchase Order Number – Required prior to beginning work.
- Correct Application Number. (i.e. 1, 2, 3, etc.)
- Correct Period Reporting Dates – Applications support docs must be sequential and within application range.
- Approved & Executed Change Orders must be listed. (Cannot invoice for unapproved changes.)
- Schedule of values percentages and amounts match the approved Pencil Copy Review – Signed by the Architect, Contractor, and University Project Manager.
- Correct Dates – Back dating not accepted.
- Signed and Notarized.

SWORN STATEMENT – Checklist:

- List all contractors, sub-contractors, suppliers... ≥ $1000.00
- Contractor's Sworn Statement amounts must coincide with Column “C” of the schedule of values document. Any unassigned or uncommitted value of contract shall be shown on an entry “Contractor – Unassigned” followed by the amount necessary to cause the “contracted to date” column of the sworn statement to equate with the schedule of value column totals.
- Current Date – Back dating not accepted.
- Signed and Notarized.

A Sworn Statement is required from every Sub Contractor on the job with a material purchase or sub-subcontract of $1,000 or more. (all the way down to the bottom tier)

DEPT. of LABOR FORM WH-347 – Certified Payroll Checklist:
(Union and Non-Union)

- For every contractor & sub-contractors work, for each week within the application for payment reporting period. (For every ‘boot’ on the floor representing the weeks within the application period)
- Wayne State University Project Number – Found on your contract.
- List ALL workers who have worked on the project site.
- Make sure workers addresses are listed.
- NO Social Security Numbers, if present they MUST be blackened out or listed in XXX-XX-1234 format.

- Work classifications based on the job specific Prevailing Wage Schedule descriptions. If you require rates for additional classifications, contact the Michigan Department of Consumer & Industry Services. (Refer to Section 410 of Bid Front End Documents.)

 http://www.cis.state.mi.us/bwuc/bsr/wh/revised_rates/whc_tbl.htm

- Apprenticeship program status – proof of enrolled program and current completion required for any workers paid at Apprenticeship rates.
- Rate of Pay verified against the Prevailing Wage Schedule with an hourly costs breakdown of fringes paid. (Refer to attachment for State of Michigan instructions and example)
- Authorized signatures on affidavit.

APPLICATION PACKAGE SUPPORTING DOCUMENTATION –

Must accompany all package reporting periods: (Union and Non-Union)

- Copies of Pay Stubs may be required for each Certified Payroll period reported – (Social Security Numbers MUST be blackened out or listed in XXX-XX-1234 format. Pay stubs need to reflect claimed participation of fringes like Medical, Dental, Retirement or 1099 classification.)
- Proof of Ownership for any “Owner Operator” (Sole Proprietor) contractors not claiming their time under prevailing wage act. – (Must list their hours and dates worked on the WH-347 Form and enter EXEMPT on the income brackets.). The Owner Operator must provide copies of “DBA” registration form confirming status as exempt from prevailing wage requirements.
PAYMENT PACKAGE DOCUMENT REQUIREMENTS

- Proof of Stored Materials – (Detailed Bill of Sale, certificate of insurance or endorsement page specifically insuring the stored materials, pictures, when large value. WSU reserves the right to on site verification of material. Stored material must be separated from ordinary inventory and labeled for WSU project.
- Partial Unconditional Waivers – Must release the accumulated amount paid for work and be immediately provided, or provided with the subsequent application for payment. Waivers shall be provided for contractors, sub-contractors, and suppliers listed on the Sworn Statements. (This is required at all tiers)
- Full Unconditional Waivers – Prime Contractor must deliver fully executed Full Unconditional Waiver upon receipt of final payment. Full Unconditional waivers may be required of sub-contractors and suppliers in advance of final Contractor payment on bonded projects. This requirement shall be determined on a project-by-project basis. Full Unconditional waivers shall be required in advance of or at the time of final payment on all non-bonded projects from all subcontractors and suppliers listed on Sworn Statements, or who have provided a notice of furnishing.
- Partial Conditional Waivers – The Contractor shall provide a Partial Conditional Waivers covering the entire amount of the application for payment. For non-bonded Projects – A partial conditional waiver from all subcontractors must accompany any application for payment within which a subcontractor draw is included.
- Sworn Statements – Required for all Sub Contractors, and Sub-subcontractors (etc.) with any contracts or purchases exceeding $1,000.

FINAL PAYMENT EXCHANGE – Checklist:

- Clear and concise As-Built drawings.
- Operation and Maintenance Manuals.
- Required training must be completed (if applicable).
- Warranty of work in accordance with project documents.
- Certificate of Substantial Completion.
- Full Unconditional Waiver

The Project Manager may provide additional requirements as may apply to individual jobs

Revised 5-6-2011
WAYNE STATE UNIVERSITY

AGREEMENT BETWEEN THE UNIVERSITY AND CONTRACTOR
FOR CONSTRUCTION SERVICES (rev 6-2013)

Executed as of the _____ day of _________, 2014 by and between:

The Board of Governors, Wayne State University
Detroit, Michigan 48202
(The University)

and

CONTRACTOR'S_NAME
CONTRACTOR'S_ADDRESS
regarding

Electrical Reliability Upgrades – Bid Pack 5 and 6
Multiple
WSU Project No. 007-248857 – Chemistry Building, 089-248858 – Biological Science Building, 612-248862 - Scott Hall, 609-248861 – C.S Mott Center
In consideration of the mutual covenants and conditions contained herein, the Parties agree as follows:

Article 1 - Scope of Work

1.1 This Agreement provides for **Furnish and Install UPS for Essential load**, located at **Multiple Locations**. The documents listed in Article 4 fully define the scope of work.

1.2 The Contractor shall furnish all the labor, materials, equipment, services, and supervision to perform all the work shown on the drawings and specifications listed in Article 18, including any addenda issued during the bid phase, and approved change orders issued during the construction phase.

1.3 The Contractor shall notify the University in writing within five (5) calendar days when the Contractor discovers any condition that will affect the contract amount or the completion date.

Article 2 - Time of Completion

2.1 The work to be performed under this Agreement shall commence upon the Contractor’s receipt of a fully-executed Agreement, and substantial completion shall be achieved by **Substantial Completion Date**.

Article 3 - The Contract Sum

3.1 The University shall pay the Contractor a **lump sum/not-to-exceed** amount of $$$$$$$ ("Amount in words 00" /100 dollars) for the performance of all work associated with the Contractor’s Base Bid "and Alternates (List)".

3.2 The University may, at its sole discretion, during the life of the contract, award the following alternates at the amounts indicated: "(If section 3.2 is not used, delete all text and enter Deleted)"

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate #1</td>
<td></td>
</tr>
<tr>
<td>Alternate #2</td>
<td></td>
</tr>
<tr>
<td>Alternate #3</td>
<td></td>
</tr>
</tbody>
</table>

3.3 In the event additional work becomes necessary, the following unit prices will apply: (If section 3.3 is not used, delete all text and enter Deleted)

<table>
<thead>
<tr>
<th>Work Item</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Article 4 - The Contract Documents

4.1 The Contract Documents shall consist of this Agreement, the drawings and specifications as listed in Article 18, the General Conditions of the Contract for Construction as defined by AIA Document A201 1970 Edition, except as otherwise provided herein, and Wayne State University's Supplementary General Conditions 1997 Edition.

4.2 For any inconsistencies found among or between these Contract Documents, the language contained in this Agreement shall prevail over all other documents and the Supplementary General Conditions shall prevail over the General Conditions. In the event of a conflict between the Drawings and Specifications, the requirement for the higher quantity and/or higher quality shall prevail.

Article 5 – Examination of Premises

5.1 The Contractor acknowledges that the University provided the opportunity for a thorough examination of the
project site and its surroundings and that the Contractor knows of no conditions preventing accomplishment of the full scope of work within the time and for the amount specified in this Agreement.

5.2 The University will deny all claims for additional time and/or cost for conditions that could have been reasonably discovered during such an examination.

Article 6 - The Architect/Engineer

6.1 The Architect/Engineer for this project is:

"[List the Architect and Engineer separately if appropriate]"

2700 West Argyle Street,

Jackson, MI 49202

(Architect Phone No / Fax No)

6.2 The University will appoint a Project Manager who will be the University’s point of contact for all matters of contract administration including, but not limited to, interpretation of documents, defining the scope of work, approving work schedules, and approving contract payments.

Article 7 - Additional Work

7.1 The University reserves the right to let other Agreements in connection with this work. The Contractor will afford other Contractors or the University’s own workforce reasonable opportunity for the delivery and storage of their material and for the performance of their work and shall properly connect and coordinate its work with theirs.

7.2 If any part of the Contractor’s work depends for proper execution or results upon the work of another Contractor or the University’s own workforce, the Contractor shall inspect and promptly report to the University’s Project Manager any defects in such work that render it unsuitable for such proper execution and results. The Contractor’s failure to so inspect and report shall constitute an acceptance of the work of others as fit and proper for reception of the Contractor’s work and as a waiver of any claim or defense against the University or other contractor which relies in whole or in part upon the contention that such work was unsuitable for proper execution and resolution.

Article 8 – Dispute Resolution

8.1 Jurisdiction over all claims, disputes, and other matters in question arising out of or relating to this contract or the breach thereof, shall rest in the Court of Claims of the State of Michigan. No provision of this agreement may be construed as Wayne State University’s consent to submit any claim, dispute or other matter in question for dispute resolution pursuant to any arbitration or mediation process, whether or not provisions for dispute resolution are included in a document which has been incorporated by reference into this agreement. Specifically, all references to Arbitration contained in the General Conditions are superceded by this Article.

8.2 In any claim or dispute by the Contractor against the University, which cannot be resolved by negotiation, the Contractor shall submit the dispute in writing for an administrative decision by the University’s Vice President for Finance and Administration, within 30 days of the end of negotiations. Any decision of the Vice President shall be made within 45 days of receipt from the Contractor and is final unless it is challenged by the Contractor by filing a lawsuit in the Court of Claims of the State of Michigan within one year of the issuance of the decision. The Contractor agrees that appeal to the Vice President is a condition precedent to filing suit in the Michigan Court of Claims.

8.3 For purposes of this section, the “end of negotiations” shall be deemed to have occurred when:

8.3.1 Either party informs the other that pursuant to this section, negotiations are at an impasse; or
8.3.2 The Contractor submits the dispute in writing to the Vice President.

8.4 Unless otherwise agreed by the University in writing, and notwithstanding any other rights or obligations of either of the parties under any Contract Documents or Agreement, the Contractor shall continue with the performance of its services and duties during the pendency of any negotiations or proceedings to resolve any claim or dispute, and the University shall continue to make payments in accordance with the Contract Documents; however, the University shall not be required or obligated to make payments on or against any such claims or disputes during the pendency of any proceeding to resolve such claims or disputes.

Article 9 - Termination for Convenience

9.1 Upon thirty days written notice to the Contractor, the University may, without cause and without prejudice to any other right or remedy of the University, elect to terminate the contract. In such case, the Contractor shall only be paid (without duplication of any items), using a Close out Change Order, for the following:

9.1.1 For completed and acceptable work executed in accordance with the Contract Documents prior to the effective date of termination, including fair and reasonable sums for overhead and profit on such Work;

9.1.2 For expenses sustained prior to the effective date of termination in performing services and furnishing labor, materials, or equipment as required by the Contract Documents in connection with uncompleted work, including fair and reasonable sums for overhead and profit on such expenses.

9.2 The Contractor shall not be paid on account of loss of anticipated profits or revenue, delay or disruption, or other economic loss arising out of or resulting from such termination. For purposes of this section, “fair and reasonable sums for overhead and profit” shall be determined by reference to Michigan law, without reference to principles used for such determinations in arbitration.

Article 10 - Progress Payments

10.1 On or before the 20th day of each month, the Contractor shall submit a written application for payment, using form AIA G702, to the Architect/Engineer and the University's Project Manager for review. The Architect/Engineer shall have ten (10) calendar days to accept or reject the Contractor's application for payment. Acceptable applications for payment shall then be submitted to the University for Payment of authorized amount(s) within thirty (30) calendar days of receipt by the University's Project Manager.

10.2 The application for payment shall contain a full schedule of values organized and sorted by subcontractor, by Construction Specifications Institute standard work categories, or in another format acceptable to the University.

10.3 Monthly progress payments shall show the percentage of work installed as of the date of the application, less amount previously installed and the amount due for the application period. The Contractor shall deduct a 10% retainage from the balance due for each progress payment and indicate the net amount due on each application.

10.4 When 50% of the work associated with this Agreement is installed, the Contractor shall not deduct additional retainage from the balance due from the University. When substantial completion is achieved and acknowledged by the Architect/Engineer, the Contractor and the University in writing, the University shall remit to the Contractor all but 2% of the retainage. The remaining 2% shall be retained by the University until the final payment is authorized and remitted to the Contractor.

Article 11 - Acceptance and Final Payments

11.1 Final payment shall be due thirty (30) days after the completion of the work, including all punch list items, provided the work is fully completed and the Agreement fully performed.
11.2 Upon receipt of written notice that the work is ready for final inspection and acceptance, the Architect/Engineer shall promptly inspect the work. When the Architect/Engineer concludes that the work is acceptable and the Agreement to be fully performed, the Architect/Engineer shall promptly issue a final certificate with an original signature, stating that the work provided is complete and acceptable and that the entire remaining balance found to be due the Contractor shall be remitted by the University once the final application for payment is received.

11.3 If, after the work has been substantially completed, full completion thereof is materially delayed through no fault of the Contractor, and the Architect/Engineer so certifies, the University shall, upon certificate of the Architect/Engineer, and without terminating the Contract, make payments of the balance due for that portion of the work fully completed and accepted. Such payments shall be made under the terms and conditions governing final payment, except that it shall not constitute a waiver of claims.

Article 12 - Non-Discrimination

12.1 The Contractor agrees that it will not discriminate against any employee or applicant for employment, to be employed in the performance of this Agreement, with respect to hire, tenure, terms, conditions or privileges of employment or any matter directly or indirectly related to employment, because of race, color, religion, sex, age, national origin, or ancestry. Breach of this covenant may be regarded as material breach of this Agreement.

12.2 The Contractor further agrees that it will, in all subcontracts relating to the performance of the work under this Agreement, provide in its subcontracts that the subcontractor will not discriminate against any employee or applicant for employment, to be employed in the performance of such contract, with respect to hire, tenure, terms, conditions or privileges of employment, or any matter directly or indirectly related to employment because of race, sex, age, color, religion, national origin or ancestry. Breach of this covenant may also be regarded as a material breach of this Agreement.

Article 13 – Laborers and Mechanics

13.1 All laborers and mechanics must be covered by Worker’s Compensation and Employer’s Liability Insurance as required by Federal and Michigan law. The Contractor shall also require all of its Subcontractors to maintain this insurance coverage.

13.2 The Contractor acknowledges and shall abide by the University’s prohibition on use of 1099 independent contractors and owner / operator business entities. The Contractor shall ensure that all classifications of laborers and construction mechanics performing Work on the Project job site are employees of the Contractor or any Trade Contractor for any tier thereof, and that each worker is covered by workers compensation insurance.

Article 14 - Prevailing Wages

14.1 The Contractor and each subcontractor shall pay to each class of mechanics and laborers not less than the wage and fringe benefit rates prevailing in the Detroit Metropolitan Area, as determined by the United States Department of Labor. The Contractor shall post on site, in a conspicuous place, a copy of all applicable wage and benefit rates, and shall provide the University with a copy of the applicable wage and benefit rates.

14.2 The Contractor and each subcontractor shall keep an accurate record showing the name and occupation of and the actual benefits and wages paid to each laborer and mechanic employed in connection with this contract. The Contractor and each subcontractor shall make certified payroll records available to the University's representatives upon request.

14.3 If a Contractor or subcontractor fails to pay the prevailing rates of wages and fringe benefits and does not
cure such failure within ten (10) days after notice to do so by the University, the University shall have the right, at its option, to do any or all of the following:

14.3.1 Withhold all or any portion of payments due the Contractor as may be considered necessary by the University to pay laborers and mechanics the difference between the rates of wages and fringe benefits required by this Agreement and the actual wage and fringe benefits paid.

14.3.2 Terminate part or all of this Agreement or any subagreement and proceed to complete the Agreement or subagreement by separate agreement with another Contractor or otherwise, in which case the Contractor and its sureties shall be liable to the University for any excess costs incurred by the University.

14.4 The Contractor shall include terms identical or substantially similar to this section in any Agreement or subagreement pertaining to the project.

Article 15 - Save Harmless

15.1 The Contractor shall indemnify, defend and hold harmless the University, its agents and employees from any and all loss, damage, claims, and causes of action whatsoever, including all costs, expenses and attorneys’ fees arising out of Contractor’s performance of obligations under the terms and conditions of this agreement. Such responsibility shall not be construed as liability for damage caused by or resulting from the negligence of the University, its agents other than the Contractor, or its employees.

Article 16 - Liquidated Damages

16.1 It is understood and agreed that, if the project is not completed within the time specified in the Agreement plus any extension of time allowed pursuant thereto, the actual damages sustained by the University because of any such delay will be uncertain and difficult to ascertain, and it is agreed that the reasonable foreseeable value of the use of said project by the University would be the sum of $500.00, Five Hundred Dollars per day. Therefore, the Contractor shall pay as liquidated damages to the University the sum of $500.00, Five Hundred Dollars per day for each day’s delay in substantially completing said project beyond the time specified in this Agreement and any extensions of time allowed thereunder.

"ENTER N/A FOR ABOVE AMOUNT IF NO LIQUIDATED DAMAGES"

Article 17 - Interpretation

17.1 This Agreement shall be interpreted and construed according to the laws of the State of Michigan.

17.2 If one part of this Agreement is found to be void by legal or legislative action, the remainder of the contract remains in full effect.
Article 18 - Drawings and Specifications

18.1 The Technical Specifications and the Project Manual dated January 21, 2015, and the following List of Drawings represents the scope of work as defined in the Contract Documents from Article 4.

DRAWINGS

<table>
<thead>
<tr>
<th>Drawing No.:</th>
<th>Description</th>
<th>dated</th>
</tr>
</thead>
</table>
WAYNE STATE UNIVERSITY

Electrical Reliability Upgrades – Bid Pack 5 and 6
WSU Project No. Project No. 007-248857 –
Chemistry Building, 089-248858 – Biological Science Building,
612-248862- Scott Hall, 609-248861 – C.S Mott Center

IN WITNESS WHEREOF the parties to these presents have hereunto set their hands as of the day and year first written above.

Signed, sealed and delivered in the presence of:

CONTRACTOR’S NAME GOES HERE

By__________________________________
signature

Please print name here

Date signed

Title

Witness

THE BOARD OF GOVERNORS of WAYNE STATE UNIVERSITY

By_______________________________
Richard J. Nork, Vice President for Finance and Facilities

Date signed

Form Contract Approved by OGC 06/13 – LG
File_reference_here
WAYNE STATE UNIVERSITY

Electrical Reliability Upgrades – Bid Pack 5 and 6
WSU Project No. Project No. 007-248857 –
Chemistry Building, 089-248858 – Biological Science Building,
612-248862- Scott Hall, 609-248861 – C.S Mott Center

FORM OF GUARANTEE

PROJECT: Electrical Reliability Upgrades – Bid Pack 5 and 6

OWNER: BOARD OF GOVERNORS, WAYNE STATE UNIVERSITY

CONTRACTOR: __

DATE: __

Know all men by these presents that, in consideration of my (our) having been awarded the Contract or Subcontract for complete furnishing and installation of:

Electrical Reliability Upgrades – Bid Pack 5 and 6 (Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center)

For: Board of Governors, Wayne State University

In conformity with drawings and specifications prepared by Architect or Engineer, Commonwealth Associates, Inc, and known as the buildings indicated above, I (we) do hereby agree that, should I (we) be notified that the said work has proved faulty, etc., that I (we) will return to the buildings within three (3) working days of the receipt of such notice, and will furnish the necessary labor and material to repair such work to the satisfaction of the Owner and without cost to the Owner.

The Agreement shall remain in full force and effect for a one year period (DATE TBD)

WITNESS:

signed: __

by: ___

Subcontractor

address: __

city/state/zip: ___

signed: ___

by: ___

General Contractor

(THIS FORM TO BE FILED IN DUPLICATE.)
A. Although AIA Document A201 - Twelfth Edition (April 1970) - "General Conditions of the Contract for Construction" is not bound herein, it forms a part of these construction documents.

B. A reference copy of AIA Document A201 - Twelfth Edition (April 1970) - "General Conditions of the Contract for Construction" is on file at the following location:

Wayne State University
Finance & Facilities Management
Procurement & Strategic Sourcing
Academic / Administrative Services Building
5700 Cass Avenue
Detroit Michigan 48202
SUPPLEMENTARY GENERAL CONDITIONS

OF

THE CONTRACT FOR CONSTRUCTION

Facilities Planning & Management - Design & Construction Services

Wayne State University
WSU SUPPLEMENTARY GENERAL CONDITIONS
OF THE
CONTRACT FOR CONSTRUCTION

NOTE: The following items related to A.I.A. General Conditions, A.I.A. Document A-201 - Twelfth Edition (April 1970), by specific number being amended to. These items, as amendments, shall have precedence over the article being amended.

ARTICLE 1 - CONTRACT DOCUMENTS

1.1 DEFINITIONS

1.1.5 The Agreement

The Agreement executed by the Contractor and the Owner.

1.2 EXECUTION, CORRELATION, INTENT, AND INTERPRETATIONS

1.2.6 "General Conditions and "Supplementary General Conditions" apply with equal force to all Contractors, Subcontractors work, and extra work required under this Contract.

1.2.7 Precedence of Drawings and Specifications.

The Agreement has precedence over WSU Supplementary General Conditions.

WSU Supplementary General Conditions have precedence over A.I.A. A-201 General Conditions of the Contract.

Specifications have precedence over drawings. Full-size drawings have precedence over scale drawings. Large-scale plans and details have precedence over small-scale plans and details. Figured dimensions have precedence over plans and elevations.

ARTICLE 2 - ARCHITECT

2.1 DEFINITION

2.1.1.1 The term Architect or Architect/Engineer as used in these specifications refers to Facilities Planning and Management - Design Services, and/or Consulting Architect/Engineer.

2.2 ADMINISTRATION OF THE CONTRACT

2.2.16 The Architect will assign Field Representatives to make periodic visits to the project for the purpose of assisting the Architect in carrying out his field responsibilities at the site. The duties, responsibilities and limitations of authority of any such Field Representative shall be as follows:

a. Explain Contract Documents: Assist the Contractor via the Contractor's Superintendent to understand the intent of the Contract Documents.

b. Observations: Conduct on-site observations and spot checks of the work in progress as a basis for determining conformance of the work, material, and equipment with the Contract Documents.

c. Additional Information: Obtain from the Architect, additional details or information, if and when required, at the job site for proper execution of the work.

d. Modifications: Consider and evaluate suggestions or modifications that may be submitted by the Contractor and report them with recommendations to the Architect for final decision.

e. Construction Schedule and Completion: Be alert to the completion, and report same to
the Architect. When the construction work has been completed in accordance with the Contract Documents, advise the Architect that the work is ready for general inspection and acceptance.

f. Job Conferences: Attend and report to the Architect on all required conferences held at the job site.

g. Observe Tests: See that tests which are required by the Contract Documents are actually conducted; observe, record and report to the Architect all details relative to the test procedures; and advise the architect's office in advance of the schedules of tests.

h. Inspection by Others: If inspectors, representing local, state or federal agencies having jurisdiction over the project, visit the job site, accompany such inspectors during their trips through the project, record the outcome of these inspections, and report same to the Architect's office.

i. Shop Drawings: Do not permit the installation of any materials and equipment for which shop drawings are required unless such drawings have been duly approved and issued by the Architect.

j. Contractor's Requisitions for Payment: Review and make recommendations to the Architect for disposition.

k. List of Items for Correction: After substantial completion, make a list of items for correction before final inspection and check each item as it is corrected.

l. Owner's Occupancy of the Building: If the Owner occupies (to any degree) the building prior to actual completion of the work by the Contractor, be especially alert to possibilities of claims for damage to completed work prior to the acceptance of the building.

m. Owner Existing Operation: In the case of additions to or Demolitions of an existing facility, which must be maintained as an operational unit, be alert to conditions on the job site which may have an effect on the Owner's existing operation.

n. Limitations of Authority: Do not become involved in any of the following areas of responsibility unless specific exceptions are established by written instructions issued by the Architect.

aa. Do not authorize deviations from the Contract Documents.

bb. Avoid conducting any test personally.

c. Do not enter into the area of responsibility of the Contractor's field superintendent.

dd. Do not expedite job for Contractor unless so instructed by the Architect.

e. Do not advise on or issue directions relative to any aspect of the building technique or sequence unless a specific technique or sequence is called for in the Specifications or by written instructions from the Architect.

ff. Do not approve shop drawings or samples.

gg. Do not authorize or advise the Owner to occupy the Project, in whole or in part, prior to the final acceptance of the building.

hh. Do not issue a Certificate for Payment.

ARTICLE 3 - OWNER
3.5 OWNER'S RIGHT TO DO WORK

3.5.1 The Owner may exercise his right, which is hereby acknowledged by the Contractor, to let independent of the Contract for the work herein specified, any other work on the premises even if of like character and trades, and the Owner shall not be liable for any damage, loss or expense incurred by the Contractor through the fault of any other Contractor so employed by the Owner. The Contractor acknowledges the necessity of work by others, to be performed at approximately the same time as the work hereunder, and agrees to perform his work in full cooperation with the work of such other trades and/or Contractors, partially or entirely completed, by such other trades and/or Contractors, or by the Owner, when, in the opinion of the Architect, such access or use is necessary for the performance and completion of any portion or all of the work of others or of any work on the site.

3.6 OWNER'S ACCESS AND PARTIAL OCCUPANCY

3.6.1 The Owner shall have access to the work at all times, and at his election, may from time to time (prior to the stipulated contract completion date) occupy any of the units or parts of the project as the work in connection therewith is complete to such a degree as will, in the opinion of the Owner, permit their temporary or permanent use. The Owner will, prior to any such partial occupancy, give notice to the Contractor thereof and such occupancy shall be upon the following terms:

a. Such occupancy shall not constitute an acceptance of work not performed in accordance with the Contract nor shall such occupancy relieve the Contractor of liability to perform any work by the Contract by not complete at the time of occupancy.

b. Except as otherwise provided by an agreement at the time of such partial occupancy, the Contractor shall be relieved of all maintenance costs on units or parts so occupied.

c. The Contractor shall not be responsible for wear and tear or damage resulting from partial occupancy.

d. The Owner shall assume risk of loss with respect to any unit or part so occupied.

e. The Contractor shall, if required by the Owner, furnish heat, light, water, or other such services to the units or parts occupied and the Owner shall make proper remuneration therefore to the Contractor.

3.6.2 The Contractor agrees that the Owner shall have the right, after seven (7) days' written notice to the Contractor, to place and install as much equipment and machinery during the progress of the work as is possible before the completion of the various parts of the work; and further agrees that such placing and installation of equipment shall not in any way evidence the completion of the work or any portion thereof, nor signify the Owner's acceptance of the work or any portion thereof. Should the Owner place or install such equipment and machinery with his own forces he shall be responsible for any damage to work of the Contractor caused by the Owner's work or workmen. Should the Owner have such placement or installation performed by another Contractor, then the Owner shall require said Contractor to be responsible for all such damage caused by his work, his workers, or his subcontractors.

ARTICLE 4 - CONTRACTOR

4.4 LABOR AND MATERIALS

4.4.3 All materials shall be so delivered, stored and handled to prevent the inclusion of foreign materials and the damage of materials by water or breakage. Packaged materials shall be delivered and stored in original packages until ready for use. Packages or materials showing evidence of water or other damage shall be rejected. All materials shall be of the respective qualities specified herein.

4.4.4 The Contractor shall be responsible for the proper care and protection of all his materials, equipment, etc., delivered at the site. Building materials, equipment, etc., may be stored on the premises subject to the approval of the Architect.
4.4.5 To insure timely availability of critical materials in case of national emergency, the Contractor may order his subcontractors to proceed with fabrication of the same earlier than required by normal sequence of construction. In the event storage facilities are not available on the site or at the source of fabrication, the Owner will endeavor to provide such storage space as may be available to care for same. Where this is necessary, the Contractor shall be paid for all stored material on the Owner's property or on the properties approved by the Owner upon approval of certified invoices. It shall be the Contractor's obligation to pay for all handling costs and damage to this material. The Contractor shall protect this property against damage.

4.6 TAXES

4.6.1 The Bidder shall include in his proposal and make payment of all Federal, State, County and Municipal taxes including Michigan State Sales and Use Taxes, now in force or which may be enacted during the progress and completion of the work covered.

4.7 PERMITS, FEES AND NOTICES

4.7.3 The Contractor shall pay highway or DPW fees for damages to sidewalks, streets, or other public property or to any public utilities.

4.7.4 Permits and licenses of a temporary nature necessary for the execution of the work shall be secured and paid for by the Contractor.

4.7.5 Except for the General Building Permit (which is not required), the Contractor shall secure and pay for all other required permits, including the following:

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Jurisdiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>State of Michigan</td>
</tr>
<tr>
<td>Plumbing</td>
<td>State of Michigan</td>
</tr>
<tr>
<td>Mechanical</td>
<td>State of Michigan</td>
</tr>
<tr>
<td>Elevator</td>
<td>City of Detroit</td>
</tr>
</tbody>
</table>

4.7.6 The Contractor shall secure certificates of inspection and of occupancy that may be required by authorities having jurisdiction over the work. These certificates shall be delivered to the Architect upon completion of the work.

4.9 SUPERINTENDENT

4.9.2 The Contractor shall give sufficient supervision to the work, using his best skill and attention. He shall carefully study and compare all drawings, specifications, and other instructions, and shall at once report to the Architect any error, inconsistency, or omission which he may discover, but he shall not be held responsible for their existence or discovery.

4.9.3 The Contractor's superintendent shall periodically inspect the entire project to make certain that all of the stipulations of all of the articles of the General Conditions are being observed.

4.12 DRAWINGS AND SPECIFICATIONS AT THE SITE

4.12.1.1 Refer to Paragraph 4.12.1, of A.I.A. General Conditions of the Contract for Construction. Modify the last sentence of this paragraph to read:

"The Drawings, marked to record all changes made during construction, shall be incorporated in the Contractor's 'Informational Package'."
4.12.2 As a basic and interim step for the fulfillment of the "Informational Package", accurate records of all non-structural underground and concealed work shall be kept, including, but not limited to, all piping, conduit, equipment, and drainage and tunnel work. In addition, such records shall be available for review during various steps of the project.

4.13 SHOP DRAWINGS AND SAMPLES

4.13.9 Immediately before and as a condition of substantial completion, the Contractor shall provide the Owner an "Informational Package" and instructional sessions on the operation, maintenance, and service of the facility. The "Informational Package" shall include:

1. One (1) set of transparency (sepia) of the approved shop drawings and descriptive material submitted during construction. Any shop documents unobtainable in sepia shall be supplied in three (3) sets.

2. One (1) set of transparency (sepia) of constructional shop drawings with all installation revisions incorporated to reflect the as-built condition. Examples of constructional shop drawings are dimensioned conduit, piping and ductwork layout drawings.

3. Three (3) sets of instructional manuals on the installation, operation, maintenance and service of equipment and systems, including parts lists.

Examples of Specific Information Required:

1. Electrical
 a. Conduit layout of light, power, and special systems, indicating dimensionally the locations and size of runs; circuit grouping and conductor size and number in conduit runs.
 b. System description and elementary diagrams, connection and interconnection diagrams, and device internal diagrams.

2. Mechanical
 a. Piping and ductwork layout indicating dimensionally the location and size of the runs.
 b. Description and diagrams of control systems.

Following the submittal of the "Informational Package", the Contractor shall schedule and provide, at the Owner's convenience, instructional sessions for Owner's personnel to acquaint them with the operation, maintenance, and service of the system.

3. Elevators
 a. Elementary diagrams and description of sequence of operation of the system control components, connection and interconnection diagrams, and device internal diagrams.

ARTICLE 5 - SUBCONTRACTORS

5.2 AWARD OF SUBCONTRACTS AND OTHER CONTRACTS FOR PORTIONS OF THE WORK

5.2.3 Delete Article 5.2.3 in its entirety.

5.2.4 Delete Article 5.2.4 in its entirety.
ARTICLE 7 - MISCELLANEOUS PROVISIONS (Revised 6-13-2011)

7.5 PERFORMANCE BOND AND LABOR AND MATERIAL PAYMENT BOND

7.5.1 The successful Bidder will be required to furnish a Performance Bond and Labor and Material Payment bond in an amount equal to 100% of the contract award amount, and include such cost in the Proposal, complying with the laws of the State of Michigan. The graduated formula no longer applies.

A. Performance Bond and Labor and Material Payment Bond shall be from a surety company acceptable to the Owner and made payable as follows:

(1) A Labor and Material Payment bond for 100% of the contract award amount to the Board of Governors of Wayne State University, and guaranteeing the payment of all subcontractors and all indebtedness incurred for labor, materials, or any cause whatsoever on account of the Contractor in accordance with the laws of the State of Michigan relating to such bonds.

(2) A Performance bond for 100% of the contract award amount to the Board of Governors of Wayne State University to guarantee and insure the completion of work according to the Contract.

B. The only acceptable Performance Bond shall be the AIA A312 – 2010.

C. The Contractor shall include with his bid evidence of his ability to obtain a Performance Bond in the amount of 100% of the bid amount, and in accordance with the terms and conditions outlined in this section, Such evidence shall be project specific and shall be submitted on a form provided by the Surety or Agent thereof.

7.7 ROYALTIES AND PATENTS

7.7.1 The Contractor hereby agrees to indemnify, protect and save harmless the Architect and the Owner from and against any and all liability, loss or damage, and to reimburse the Owner and the Architect for any expenses, including legal fees and disbursements to which the Owner or the Architect may be put because of claims of litigation on account of infringement or alleged infringement of any letters patent or patent rights by reason of the work or materials, equipment, or other items used by the Contractor in its performance.

7.9 INTEREST

7.9.1 Delete Article 7.9 in its entirety.

ARTICLE 8 - TIME

8.1 DEFINITIONS

8.1.3 The Date of Substantial Completion of the Work is the Date certified by the Architect when construction of the entire work is sufficiently complete, in accordance with the Contract Documents, so the Owner may occupy the Work for the use for which it is intended. It is the beginning date for the guarantees on all the Project Work.

8.3.5 LIQUIDATED DAMAGES

It is understood that if said Contract is not completed within the time specified in the Contract plus any extension of time thereto, the Contractor shall pay Liquidated Damages to the Owner as set forth in Article 11 of the Agreement between Contractor and Owner for Construction.

ARTICLE 9 - PAYMENT AND COMPLETION
9.3 PROGRESS PAYMENTS

9.3.1 On or before the 20th day of each month, the Contractor shall submit to the Architect on the Owner's Standard Form, a written application for payment showing the proportionate value of the work installed to date from which shall be deducted, a reserve of 10% and all previous payments, and the balance of the amount as approved by the Architect shall be due and payable to the Contractor on or about the 15th day of the succeeding month.

9.3.2.2 No payments will be made because of materials or equipment stored off the site, except as provided for in Subparagraph 4.4.5 of the Supplementary General Conditions or other special cases the Owner may approve.

9.6 FAILURE OF PAYMENT

9.6.1 Delete Article 9.6 in its entirety.

ARTICLE 11 - INSURANCE (Revised 3-22-2012)

11.1 CONTRACTOR’S LIABILITY INSURANCE

11.1.2 The insurance required by Subparagraph 11.1.1 shall be written for not less than any limits of liability specified herein, or required by law, whichever is greater, and shall include contractual liability insurance as applicable to the Contractor's obligations under Paragraph 4.18.

During the life of the Contract, the Contractor shall maintain the following types of insurance:

A. General Requirements

<table>
<thead>
<tr>
<th>Type of Insurance</th>
<th>Minimum Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Comprehensive General Liability</td>
<td>Bodily Injury</td>
</tr>
<tr>
<td></td>
<td>$ 500,000 each person</td>
</tr>
<tr>
<td></td>
<td>$1,000,000 aggregate</td>
</tr>
<tr>
<td></td>
<td>Property Damage</td>
</tr>
<tr>
<td></td>
<td>$ 500,000 each occurrence</td>
</tr>
<tr>
<td></td>
<td>$1,000,000 aggregate</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>$2,000,000 combined single limit (CSL)</td>
</tr>
<tr>
<td>2.Fire Legal Liability</td>
<td>$ 100,000</td>
</tr>
<tr>
<td>3.Comprehensive Automobile Liability (including</td>
<td>Bodily Injury</td>
</tr>
<tr>
<td>Hired and non-owned vehicles)</td>
<td>$ 500,000 each person</td>
</tr>
<tr>
<td></td>
<td>$1,000,000 each accident</td>
</tr>
<tr>
<td></td>
<td>Property Damage</td>
</tr>
<tr>
<td></td>
<td>$ 500,000 each accident</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>$2,000,000 combined single limit (CSL)</td>
</tr>
<tr>
<td></td>
<td>$100,000</td>
</tr>
<tr>
<td>5.Property - All Risk</td>
<td>In an amount sufficient to cover the</td>
</tr>
<tr>
<td></td>
<td>total value of the contractor's</td>
</tr>
</tbody>
</table>
| | property in the care, custody or control of WSU.

B. Maximum Acceptable Deductibles

<table>
<thead>
<tr>
<th>Type of Insurance</th>
<th>Maximum Deductible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensive General Liability</td>
<td>$5,000</td>
</tr>
<tr>
<td>Fire Legal Liability</td>
<td>$5,000</td>
</tr>
<tr>
<td>Comprehensive Automobile Liability (including</td>
<td>-0-</td>
</tr>
<tr>
<td>Hired and non-owned vehicles)</td>
<td></td>
</tr>
</tbody>
</table>
11.1.3 The Board of Governors, Wayne State University, shall be named as an additional insured but only with respect to accidents arising out of the performance of said contract. The contractor shall prepare a certificate of insurance which shall name the “Office of Risk Management; 5700 Cass Avenue” as the Wayne State University certificate holder.

11.1.3.1 The Contractor shall either 1) require each of his Subcontractors to procure and to maintain during the life of his subcontract, Subcontractors’ Comprehensive General Liability, Automobile Liability and Property Damage Liability Insurance of the type and in the same amounts as specified in the Subparagraph, or 2) insure the activity of his subcontractors in his own policy.

11.2 OWNER’S LIABILITY INSURANCE

Delete Article 11.2 in its entirety.

11.3 PROPERTY INSURANCE

Delete Article 11.3 in its entirety and replace with the following:

11.3.1 The Contractor shall purchase and maintain property insurance upon the entire work at the site to the full insurable value thereof. This insurance shall include the interests of the Owner, the Contractor, Subcontractors, and sub-subcontractors in the work and shall insure against the perils of Fire, Extended Coverage, Vandalism, and Malicious Mischief.

11.3.2 The Owner and Contractor waive all rights against each other for damages caused by fires or other perils to the extent covered by insurance provided under Subparagraph 11.3.1. The Contractor shall require similar waivers by Subcontractors and sub-subcontractors in accordance with Clause 5.3.1.5.

11.3.3 Insurance must be issued by an insurance company with an “A rating as denoted in the AM Best Key Rating Guide”.

ARTICLE 12 - CHANGES IN THE WORK

12.1 CHANGE ORDERS

12.1.8 Percentage markups in pricing under Subparagraphs 12.1.3.1, 12.1.3.3, and 1.2.4 shall be as limited in the Contract Documents. Unit price of Subparagraph 12.1.3.2 shall represent total unit cost to the Owner and shall include the Contractor’s markup for overhead and profit.

ARTICLE 14 - TERMINATION OF THE CONTRACT

14.1 TERMINATION BY THE CONTRACTOR

14.1.1 If the work is stopped for a period of thirty days under any order of any court or other public authority having jurisdiction, or as a result of any act of government, such as a declaration of a national emergency making materials unavailable, through no act or fault of the contract or a subcontractor or their agents or employees or other persons performing any of the Work under a contract with the contractor, then the contractor may, upon seven days' written notice to the Owner and the Architect, terminate the contract and recover from the Owner payment for all Work executed and for any proven loss sustained upon any materials, equipment, tools, construction equipment, and machinery, including reasonable profit and damages.

ARTICLE 15 - ADDITIONAL CONDITIONS

15.1 SUBSTITUTION OF MATERIALS AND EQUIPMENT

15.1.1 Whenever a material, article, or piece of equipment is identified on the Drawings or in the
Specifications by reference to manufacturers' or vendors' names, trade names, catalog numbers, or the like, is so identified for the purpose of establishing a standard, and any material, article, or piece of equipment of other manufacturers or vendors, which will perform adequately the duties imposed by the general design will be considered equally acceptable provided the material, article, or piece of equipment so proposed is, in the opinion of the Architect, of equal substance, appearance, and function. It shall not be purchased or installed by the Contractor without the Architect's written approval.

15.2 NON-DISCRIMINATION PROVISION AND WAGE AND HOUR ACT

15.2.1 During the performance of this contract, the Contractor agrees as follows:

15.2.1.1 The Contractor shall not discriminate against any employee or applicant for employment because of sex, race, creed, color, age, or national origin. The Contractor will take affirmative action to insure that applicants are employed, and that employees are treated during employment without regard to their sex, race, age, creed, color, or national origin.

15.2.1.2 Such action shall include but not be limited to, the following: employment; upgrading; demotion; or transfer; recruitment or recruitment advertising; layoff or terminations; rates of pay or other forms of compensation; and selection for training, including apprenticeship. The Contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided setting forth the provisions of this non-discrimination clause.

15.2.1.3 The Contractor will, in all solicitations, or advertisements for employees, placed by or on behalf of the contractor, state that all qualified applicants will receive consideration for employment without regard to sex, race, creed, color, age or national origin.

15.2.1.4 The Contractor will send to each labor union or representative of workers with which he has a collective bargaining agreement or other contract or understanding, a notice advising the labor union or worker's representative of the Contractor's commitments under Section 202 of Executive Order No. 11246 of October 27, 1965, and shall post copies of the notice in conspicuous places available to employees and applicants for employment.

15.2.1.5 The Contractor will comply with all provisions of the Executive Order No. 11246 of October 27, 1965, and of the rules, regulations and relevant orders of the Secretary of Labor or other government agency or authority having jurisdiction.

15.2.1.6 The Contractor will furnish all information and reports required by Executive Order No. 11246 of October 27, 1965, and by the rules, regulations, and orders of the Secretary of Labor or other government agency or authority having jurisdiction, and will permit access to his books, records, and accounts by the administrative agency and the Secretary of Labor for the purposes of investigation to ascertain compliance with such rules, regulations and orders.

15.2.1.7 In the event of the Contractor's noncompliance with the non-discrimination clauses of this contract, or with any of the said rules, regulations, or orders, this Contract may be canceled, terminated or suspended in whole or in part, and the Contractor may be declared ineligible for further University contracts or federally-assisted contracts in accordance with procedure authorized in Executive Order No. 11246 of October 27, 1965, or by rule, regulation, or order of the Secretary of Labor or other government agency or authority having jurisdiction.

15.2.1.8 The Contractor will include in the provisions of Subparagraph 15.2.1.1 through 15.2.1.8 in every subcontract or purchase order unless exempted by rules, regulations or orders of the President's Committee on Equal Employment Opportunity issued pursuant to Section 204 of Executive Order No. 11246 of September 14, 1965, so that provisions will be binding upon each subcontractor or vendor. The Contractor will take such action with respect to any subcontract or purchase order as the administering agency may direct as a means of enforcing such provisions including sanctions for noncompliance: Provided, however, that in the event the Contractor becomes involved as a result of such direction by the administering agency, the Contractor may request the United States...
to enter into such litigation to protect the interest of the United States.

15.3 COMPLIANCE WITH COPELAND ANTI-KICKBACK ACT AND REGULATIONS

15.3.1 The Contractor shall comply with the Copeland Anti-Kickback Act and Regulations of the Secretary of Labor (29CFR, Part 3) which are herein incorporated by reference.

15.4 PREVAILING WAGES

15.4.1 Contractors and subcontractors shall pay all mechanics and laborers, including apprentices and trainees, no less than the wage and fringe benefit rates prevailing in the locality in which the work is performed. Wage and fringe benefit rates are determined by the Federal Government Department of Labor.

15.4.2 Classifications not provided in the schedule shall be determined prior to the award of the contract and shall be no less than the wage and fringe benefit rates determined by the Federal Department of Labor.

15.4.3 Contractors and subcontractors shall adhere to the ratios of apprentices to journey workers as determined by the Federal Department of Labor.

15.4.4 Contractors and subcontractors shall keep a copy of the prescribed wage and benefit rates posted at the construction site in a conspicuous place.

15.4.5 Contractors and subcontractors shall keep an accurate record of the name, occupation, and the actual benefits paid to each mechanic or laborer for the contract. This record shall be made available for reasonable inspection by the Federal Department of Labor and the Owner.
The Technical Specifications dated January 21, 2015 and the following List of Drawings represent the scope of work as defined in the Contract Documents from Article 4.

DRAWINGS

<table>
<thead>
<tr>
<th>Drawing No.:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-248857 (Chemistry Building) Drawings:</td>
<td></td>
</tr>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes and Design Criteria</td>
</tr>
<tr>
<td>E-1</td>
<td>First Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-3</td>
<td>Third Floor Plan</td>
</tr>
<tr>
<td>E-4</td>
<td>Fourth Floor Plan</td>
</tr>
<tr>
<td>E-PH</td>
<td>Penthouse Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
<tr>
<td>E-103</td>
<td>Existing Power Panels</td>
</tr>
<tr>
<td>E-103.1</td>
<td>Existing Power Panels</td>
</tr>
<tr>
<td>E-104</td>
<td>Existing RP/LP Panels</td>
</tr>
<tr>
<td>AQ-03BS</td>
<td>Third Floor equipment Plan – Area BS (For Reference Only)</td>
</tr>
<tr>
<td>089-248858 (Biological Science Building) Drawings:</td>
<td></td>
</tr>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes and Design Criteria</td>
</tr>
<tr>
<td>E-0</td>
<td>Ground Floor Plan</td>
</tr>
<tr>
<td>E-1</td>
<td>First Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-4</td>
<td>Fourth Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-101.1</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
<tr>
<td>612-248862 (Scott Hall) Drawings:</td>
<td></td>
</tr>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes & Design Criteria</td>
</tr>
<tr>
<td>E-0</td>
<td>Basement Floor Plan</td>
</tr>
<tr>
<td>E-1</td>
<td>First Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-3</td>
<td>Third Floor Plan</td>
</tr>
<tr>
<td>E-4</td>
<td>Fourth Floor Plan</td>
</tr>
<tr>
<td>E-5</td>
<td>Fifth Floor Plan</td>
</tr>
<tr>
<td>E-6</td>
<td>Sixth Floor Plan</td>
</tr>
<tr>
<td>E-7</td>
<td>Seventh Floor Plan</td>
</tr>
<tr>
<td>E-8</td>
<td>Eighth Floor Plan</td>
</tr>
<tr>
<td>E-9</td>
<td>Ninth Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
<tr>
<td>E-103</td>
<td>Typical Electrical Details</td>
</tr>
</tbody>
</table>
609-248861 (C.S Mott Center) Drawings:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes & Design Criteria</td>
</tr>
<tr>
<td>E-0</td>
<td>Basement Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-3</td>
<td>Third Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
<tr>
<td>AR1-02A</td>
<td>Second Floor Reflected Ceiling Plan Area 'A' (For Reference only)</td>
</tr>
<tr>
<td>AR1-02B</td>
<td>Second Floor Reflected Ceiling Plan Area 'B' (For Reference only)</td>
</tr>
<tr>
<td>AR1-03A</td>
<td>Third Floor Reflected Ceiling Plan Area 'A' (For Reference only)</td>
</tr>
<tr>
<td>AR1-0GA</td>
<td>Ground Floor Reflected Ceiling Plan Area 'A' (For Reference only)</td>
</tr>
<tr>
<td>AR1-0GB</td>
<td>Ground Floor Reflected Ceiling Plan Area 'B' (For Reference only)</td>
</tr>
</tbody>
</table>
GENERAL REQUIREMENTS

GENERAL

A. CONTRACTOR'S RESPONSIBILITY

It is not the responsibility of the Architect/Engineer or Owner's Representative to notify the Contractor or subcontractors when to commence, to cease, or to resume work; nor in any way to superintend so as to relieve the Contractor of responsibility or of any consequences of neglect or carelessness by him or his subordinates. All material and labor shall be furnished at times best suited for all Contractors and subcontractors concerned, so that the combined work of all shall be properly and fully completed on the date fixed by the Contract.

The Contractor shall be responsible for all items contained in both the specifications and on the drawings for all trades. He shall be responsible for the proper division of labor according to current labor union agreements regardless of the division of responsibility implied in the contract documents.

B. CODES AND STANDARDS

Reference to standard specifications for workmanship, apparatus, equipment and materials shall conform to the requirements of latest specifications of the organization referenced, i.e., American Society for Testing Materials (ASTM), Underwriters Laboratories, Inc. (UL), American National Standards Institute, Inc. (ANSI), and others so listed in the Technical Specifications.

C. PERMITS, FEES AND NOTICES

See Supplementary General Conditions.

D. MEASUREMENTS

Before proceeding with each Work Item, Contractor shall locate, mark and measure any quantity or each item and report quantities to Engineer. If measured quantities exceed Engineer's estimate, Contractor shall obtain written authorization to proceed from Owner before executing Work required for that Work Item.

Measurement of quantities for individual Work Items will be performed by Contractor and reviewed by Engineer. Coordinate measurements with inspection as required in Section "Coordination."

Cost of Work included in Work Item for quantities as indicated in Contract Documents shall be included in Base Bid.

1. Additions to or deductions from lump sum price for quantities of each Work Item added to or deducted from Work respectively shall be at unit prices indicated in Bid Form and shall constitute payment or deductions in full for all material, equipment, labor, supervision and incidentals necessary to complete Work.

E. CONTRACTOR'S MEASUREMENTS

Before ordering material, preparing Shop Drawings, or doing any work, each Contractor shall verify, at the building, all dimensions which may affect his work. He assumes full responsibility for the accuracy of his figures. No allowance for additional compensation will be considered for minor discrepancies between dimensions on the drawings and actual field dimensions.

F. CONTINUITY OF SERVICE (Revised 3-26-2012)

Continuity of all existing services in the building shall be maintained throughout the construction period. Where it is necessary to tie into the existing electrical service, water or waste systems, it shall be done as directed by the Architect/Engineer. This Contract shall also provide temporary lines or bypasses that may be required to maintain...
continuous service in the building. All utility shutdowns must be approved by the Owners Representative / Project Manager, not less than 7 business days prior to the event, so that proper notification can be posted.

G. SUBMITTALS

All submittals (except Shop Drawings) and samples required by the Specifications shall be submitted in triplicate unless otherwise specified for a particular item under an individual Specification Section.

Each sample shall be clearly identified on a tag attached, showing the name of the Project Consultant, the project number and title, the names of the Contractor, manufacturer (and supplier if same is not the manufacturer), the brand name or number identification, pattern, color, or finish designation and the location in the work.

Each submittal shall be covered by a transmittal letter, properly identified with the project title and number and a brief description of the item being submitted.

Contractor shall be responsible for all costs of packing, shipping and incidental expenses connected with delivery of the samples to the Project Consultant or other designated address.

If the initial sample is not approved, prepare and submit additional sets until approval is obtained.

Materials supplied or installed which do not conform to the appearance, quality, profile, texture or other determinant of the approval samples will be rejected, and shall be replaced with satisfactory materials at the Contractor's expense.

H. GENERAL/STANDARD ELECTRONIC EQUIPMENT AND INFRASTRUCTURE REQUIREMENTS (Revised 11-2008)

1. Compliance with WSU Standards for Communications Infrastructure
 A. All applicable work, products, materials and methods shall comply with the latest version of the "WSU Standards for Communications Infrastructure" except as where noted.
 B. This document is available at the following website/URL: http://networks.wayne.edu/WSU-Communications-Standards.pdf

2. Automation System Program Code
 A. All automation system uncompiled and compiled program codes, source codes, custom modules, graphical user interface screen shots and any other automation system programming data and material (Program Code) shall be provided to the UNIVERSITY in hard copy and on CD Rom in an unencrypted format acceptable to the UNIVERSITY.
 B. Copyright for the Program Code shall be assigned to the UNIVERSITY for purposes of system maintenance.

PROTECTION OF OCCUPANCY (Revised 3-2006)

A. FIRE PRECAUTIONS

Take necessary actions to eliminate possible fire hazards and to prevent damage to construction work, building materials, equipment, temporary field offices, storage sheds, and other property.

During the construction, provide the type and quantity of fire extinguishers and fire hose to meet safety and fire prevention practices by National Fire Protection Association (NFPA) Codes and Standards (available at http://www.nfpa.org/)

In the event that construction includes "hot work", the contractor shall provide the Owner's Representative with a copy of their hot work policy, procedures, or permit program. No hot work activity (temporary
maintenance, renovation, or construction by operation of a gas or electrically powered equipment which produces flames, sparks or heat that is sufficient to start a fire or ignite combustible materials) shall be performed until such documents are provided. During such operations, all highly combustible or flammable materials shall be removed from the immediate working area, and if removal is impossible, same shall be protected with flame retardant shield.

Not more than one-half day's supply of flammable liquids such as gasoline, spray paint and paint solvent shall be brought into the building at any one time. Flammable liquids having a flash point of 100 degrees F. or below which must be brought into the building shall be confined in an Underwriters Laboratories (UL) labeled safety cans. The bulk supply of flammables shall be stored at least 75 feet from the building and other combustible materials. Spigots on drums containing flammable liquids are prohibited on the project site. Drums shall be equipped with approved vented pumps, and be grounded and bonded.

Only a reasonable working supply of combustible building materials shall be located inside the building.

All oil-soaked rags, papers, and other similar combustible materials shall be removed from the building at the close of each day's work, or more often if necessary, and placed in metal containers, with self-closing lids.

Materials and equipment stored in cardboard cartons, wood crates or other combustible containers shall be stored in an orderly manner and accessibly located, fire-fighting equipment of approved types shall be placed in the immediate vicinity of any materials or equipment stored in this type of crate or carton.

No gasoline, benzene, or like flammable materials shall be poured into sewers, manholes, or traps.

All rubbish shall be removed from the site and legally disposed of. Burning of rubbish, waste materials or trash on the site shall not be permitted.

The contractor shall be responsible for the conduct of employees relative to smoking and all smoking shall be in the area designated by the Architect/Engineer.

B. GENERAL SAFETY AND BUILDING PRECAUTIONS

Provide and maintain in good repair barricades, railings, etc., as required by law for the protection of the Public. All exposed material shall be smoothly dressed.

At dangerous points throughout the work environment provide and maintain colored lights or flags in addition to above guardrails.

Isolate Owner’s occupied areas from areas where demolition and alteration work will be done, with temporary, dustproof, weatherproof, and fireproof enclosures as conditions may require and as directed by the Architect/Engineer.

Cover and protect furniture, equipment and fixtures to remain from soiling, dust, dirt, or damage when demolition work is performed in rooms or areas from which such items have not been removed.

Protect openings made in the existing roofs, floors, and other construction with weatherproof coverings, barricades, and temporary fire rated partitions to prevent accidents.

Repair any damage done to existing work caused by the construction and removal of temporary partitions, coverings, and barricades.

The Contractor will be held responsible for all breakage or other damage to glass up to the time the work is completed.

Provide protection for existing buildings, interior and exterior, finishes, walls, drives, landscaping, lawns (see below), etc. All damages shall be restored to match existing conditions to the satisfaction of the Architect/Engineer.
The Contractor and Owner will define the anticipated area of lawn damage at the project Pre-Construction Meeting. Whether the lawn is sparse or fully developed, any lawn damaged due to the Contractor's work will be replaced with sod by the University. The University's unit cost of $10.00 per square yard and landscaping at a rate of 1.5 times the cost of the sod repairs, the full cost of which will be assessed against the Contractor. At the completion of the project, a deductive Change Order reflecting this cost will be issued. The Contractor is to include an allowance in his bid for this corrective work.

C. INTERFERENCE WITH OWNER'S OPERATIONS

The Owner will be utilizing the Building Facilities to carry on his normal business operation during construction. The Contractor shall schedule performance of the work necessary to complete the project in such a way as to interfere as little as possible with the operation during construction. The Contractor shall schedule performance of the work necessary to complete the project in such a way as to interfere as little as possible with the operation of the Owner.

Work which will interfere with the Owner's occupancy, including interruptions to the Owner's mechanical and electrical services, and essentially noisy operations (such as jackhammering) shall be scheduled in advance. The schedule of alterations shall be approved by the Architect/Engineer and the work shall be done in accordance with the approved schedule.

It is understood that the work is to be carried through to completion with the utmost speed consistent with good workmanship and to meet the construction schedule.

The Contractor shall begin work under the Contract without delay upon receipt of the fully-executed contract and shall substantially complete the project ready for unobstructed occupancy and use of the Owner for the purposes intended within the completion time stated in the contract.

The Contractor shall, immediately upon award of contract, schedule his work and expedite deliveries of materials and performance of subcontractors to maintain the necessary pace to meet the construction schedule.

CONTRACTOR'S REPRESENTATION AND COORDINATION

A. FIELD SUPERINTENDENT

Contractor shall assign a full time project manager/superintendent for the duration of the project. This person shall be experienced and qualified in all phases of the work and shall be present at the site during Contractor's working hours. The project manager shall have Contractor's full authority to represent Contractor in all routine operations including payment, changes to the work, and scheduling. Contractor shall not re-assign this individual without prior written permission of the Owner.

B. MEETINGS

When directed by the Architect/Engineer, meetings shall be held for the purpose of coordinating and expediting the work. The invited contractors or subcontractors will be required to have qualified representatives at these meetings, empowered to act in their behalf.

C. COORDINATION

The Contractor shall also provide a staff adequate to coordinate and expedite the work properly and shall at all times maintain competent supervision of its own work and that of its subcontractors to insure compliance with contract requirements.

The Contractor shall be solely responsible for all construction means, methods, techniques, sequences, and procedures and for coordinating all portions of the work under the Contractor.

D. CONSTRUCTION SCHEDULE
The Construction Schedule shall be prepared after the award of contract. Soon after, a pre-construction meeting is held with the Owner and the Architect/Engineer to determine the areas to which the Contractor will be allowed access at any one time.

The Contractor is alerted to the fact that areas in which he will be working will be occupied by students and employees of the University as well as the general public. The Contractor's access, to and from the project site, will be confined to limited areas so as not to unduly disrupt the normal activities of the University.

TEMPORARY FACILITIES

A. GENERAL

The following temporary facilities descriptions represent standard conditions. Verify accuracy with Architect/Engineer at time of bids.

B. CONTRACTOR'S OFFICE

Provide field offices as required. Locate temporary field offices on site where directed by Architect/Engineer.

Appearance and location of field offices shall be approved by the Architect/Engineer.

Provide for all other administrative facilities and storage off the Owner's property.

C. STORAGE OF MATERIALS

All materials shall be stored in areas designated by the Architect/Engineer. All stored materials shall be arranged for the minimum disruption to occupants and to allow full access to and throughout the building. Materials stored outdoors shall be neat and orderly and covered to prevent damage or vandalism.

D. PARKING

1. GENERAL

University parking regulations will be strictly enforced.

Maintain Owner's parking areas free of dirt and debris resulting from operations under the contract.

2. STANDING AND UNLOADING/LOADING VEHICLES

All Contractors are to call Wayne State University Public Safety at 577-2222, and give at least 24 hours advance notice that they have vehicles that must be at the job site.

Vehicles will be permitted at the project site only as long as the vehicles are needed for loading/unloading, and must be immediately moved upon completion.

All unauthorized and/or unattended standing vehicles will be subject to ticketing and removal by University Police. Towed vehicles may be reclaimed by calling 577-2222, and paying any assessed charges.

3. COMPLIMENTARY PARKING

There is no complimentary parking for Contractor's employee vehicles.

4. WAYNE STATE UNIVERSITY PUBLIC/STUDENT PARKING AREAS

Public Parking, on a first-come first-served basis is available. Contact the office of the One Card System, at 313.577.9513 for information on availability of parking on a contractual basis.
E. **TOILET FACILITIES**

The Owner's designated existing toilet facilities may be used by workers on the project. Contractor shall maintain such facilities in a neat and sanitary condition.

F. **TELEPHONE USE**

If required, the Contractor shall provide and pay for a temporary telephone within the building for his use and that of his subcontractors.

No use of the Owner's telephone (except pay telephones) will be permitted.

G. **ACCESS DEVICES**

The Contractor shall furnish and maintain temporary hoists, ladders, railings, scaffolds, runways, and the like as required for safe, normal access to the permanent construction until the permanent facilities are complete. Each trade shall furnish such additional means of access as may be required for the progress and completion of the work. Such temporary access devices shall meet all applicable local, state, and federal codes and regulations.

H. **HEAT AND VENTILATION**

Provide cold weather protection and temporary heat and ventilation as required during construction to protect the work from freezing and frost damage.

Provide adequate ventilation as required to maintain reasonable interior building air conditions and temperatures, to prevent accumulation of excess moisture, and to remove construction fumes.

Tarpaulins and other materials used for temporary enclosures. Coverings and protection shall be flameproofed.

I. **WATER SERVICE**

Sources of water are available at the site. The Owner will pay for reasonable amounts of water used for construction purposes.

The Contractor shall provide, at the earliest possible date, temporary connections to the water supply sources and maintain adequate distribution for all construction requirements. The Contractor shall protect sources against damage.

Methods of conveying this water shall be approved by the Architect/Engineer and shall not interfere with the Owner's operations.

J. **ELECTRICAL SERVICES**

All charges for reasonable amounts of electrical power energy used for temporary lighting and power required for this work will be paid by the Owner.

The Contractor shall provide and maintain any temporary electrical lighting and power required for this work. At the completion of the work, all such temporary electrical facilities shall be removed and disposed of by the Contractor.

Temporary lighting and power shall comply with the regulations and requirements of the National Electrical Code.

INSPECTIONS AND TESTS

The Architect/Engineer shall at all times have access to the work wherever it is in preparation or in progress and the Contractor shall provide proper facilities for such access and for observation.

No failure of the Architect/Engineer, during the progress of the work, to discover or reject materials or work not in accordance with the Contract Specifications and Drawings shall be deemed an acceptance thereof nor a waiver of
defects therein. Likewise, no acceptance or waiver shall be inferred or implied due to payments made to contractor or by partial or entire occupancy of the work, or installation of materials that are not strictly in accordance with the Contract Specifications and Drawings.

Where tests are specifically called for in the Specifications, the Owner shall pay all costs of such tests and engineering services unless otherwise stated in the contract.

Where tests are not specifically called for in the Specifications, but are required by the Architect/Engineer or Consultant, the Owner shall pay all costs of such tests and engineering services unless the tests reveal that the workmanship or materials used by the Contractor are not in conformity with the Drawings, Specifications, and/or approved shop drawings. In such event, the Contractor shall pay for the tests, shall remove all work and materials so failing to conform and replace with work and materials that are in full conformity.

CLEAN-UP

The Contractor shall at all times keep the Owner's premises and the adjoining premises, driveways and streets clean of rubbish caused by the Contractor's operations and at the completion of the work shall remove all the rubbish, all of his tools, equipment, temporary work and surplus materials, from and about the premises, and shall leave the work clean and ready for use. If the contractor does not attend to such cleaning immediately upon request, the Architect/Engineer may cause such cleaning to be done by others and charge the cost of same to the Contractor.

The Contractor will be responsible for all damage from fire that originates in, or is propagated by, accumulations of rubbish or debris.

All rubbish and debris shall be disposed of off the Owner's property in an approved sanitary landfill site. No open burning of debris or rubbish will be permitted. Job site shall be left neat and clean at the completion of each day's operation.

PROJECT CLOSE-OUT

A. RECORD DRAWINGS

At beginning of job, provide one copy of Working Drawings, and record changes, between Working Drawings and "As Builts", including changes made by Addenda, Change Orders, Shop Drawings, etc. These shall be kept up to date. Update to indicate make of all mechanical and electrical equipment and fixtures installed. Keep these Record Prints in good condition and available for inspection by the Architect/Engineer.

Upon completion of the job, turn over to the Architect/Engineer Record Prints of Working Drawings showing all job changes.

B. OPERATING AND MAINTENANCE DATA

Prepare and furnish to the Architect/Engineer three (3) bound copies of "Operating and Maintenance Manual" on all equipment installed under this Contract.

Manual shall include copies of all Manufacturers' "Operating and Service Instructions", including Parts List, Control Diagrams, Description of Control Systems, Operating, Electrical Wiring, and any other information needed to understand, operate and maintain the equipment. The names and addresses of all subcontractors shall be included. These instructions shall be custom-prepared for this job -- catalog cuts will not be accepted. Equipment shall be cross-referenced to Section of Specifications and to location shown and scheduled on drawings.

C. FINAL INSPECTION

Secure final inspections from the State of Michigan as soon as the work is completed and immediately submit such Certificates to the Architect/Engineer.
D. **GUARANTEES (See Sections 00510 and 01781)**

Guarantees on material and labor from the General Contractor and his subcontractors shall be as required in Sections 00510 and 01781.

E. **SWORN STATEMENT AND WAIVER OF LIENS (revised 4-11-2012)**

Prior to final payment, the General Contractor shall provide a Contractor's Sworn Statement and Full Unconditional Waivers of Liens from all subcontractors for material and labor and from all suppliers who provide materials exceeding $1,000. Sworn Statements and signed waivers from all Subcontractors must accompany Pay Applications or they will be returned for such documentation prior to approval.

ASBESTOS HAZARD

A. The contractor shall not start any work in any area that has not been inspected for asbestos by the Owner's Industrial Hygiene Department, or a qualified representative of the Owner and approval is given for work to be done. If asbestos is found, safety measures as recommended by the Owner's Industrial Hygiene Department, or a qualified representative of the Owner, shall be completed, or approval given for work to be done before work is started. The contractor shall not perform any asbestos removal or containment work under the contract.

KEYS

A. The Owner shall provide the contractor keys on loan to have access to the various spaces in order to complete the contract. Contractor will sign for and be responsible for each key on loan, returnable to Owner upon completion of the contract. In case of any lost keys, the Owner will backcharge the contract $250.00 for each core change. In the event that a Contractor wants access to a secured area, he shall give the Owner a minimum 48-hour notice.
SUMMARY OF WORK

PROJECT: Electrical Reliability Upgrades – Bid Pack 5 and 6

WSU PROJECT NO.: Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center

PROJECT MANAGER: Ekta Kamalia

1. EXAMINATION

The Contractor shall visit the site and become familiar with conditions under which he will be working. Also meet with the project manager and review site access, storage areas, etc.

2. Description of Work

Project includes Furnish and Installation of a complete working UPS System for Chemistry Building, Biological Science Building, Scott Hall Building and C.S Mott Center. UPS Equipment is to be obtained from Ancona (see specifications for contact and phone number) for the manufacturer Toshiba in accordance with the University’s preferred vendor agreement; Ancona has fixed rate pricing for WSU projects. Contractors shall include in their bid, all costs to purchase and install UPS equipment, so that it is completely functional. Contractors shall be required to provide UPS equipment price along with schedule of values for the project as part of any bid qualification meetings.

Allowances:

For Electrical Reliability Upgrades – Bid Package 5 and 6 projects (Project No. 007-248857 - Chemistry Building, 089-248858 – Biological Science Building, 612-248862- Scott Hall, 609-248861 – C.S Mott Center) base bid shall include allowances to cover costs associated with premium time associated with overtime work per Specification Section 012100. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

3. The building is located at

Wayne State University
Chemistry Building – 5101 Cass Avenue, Detroit, MI 48202
Biological Science Building – 5047 Gullen Mall, Detroit, MI 48202
Scott Hall Building – 540 East Canfield Avenue, Detroit, MI 48201
C.S Mott Center – 275 East Hancock, Detroit, MI 48201
Project Specifications

Prepared for:
Wayne State University

For Bids
01/21/2015

Prepared by
320006
Wayne State University
Biology Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids
Biology Building

Building No. 089
5047 Gullen Mall
Detroit, MI 48201

Drawing List

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Sheet Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes and Design Criteria</td>
</tr>
<tr>
<td>E-1</td>
<td>First Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-4</td>
<td>Fourth Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-101.1</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1 – General Requirements</td>
<td></td>
</tr>
<tr>
<td>012100</td>
<td>Allowances</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
</tr>
<tr>
<td>Division 3 – Concrete</td>
<td></td>
</tr>
<tr>
<td>031000</td>
<td>Concrete Formwork</td>
</tr>
<tr>
<td>033000</td>
<td>Cast-In-Place Concrete</td>
</tr>
</tbody>
</table>
Wayne State University
Biology Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Division 5 – Metals</td>
</tr>
<tr>
<td>050940</td>
<td>Post Installed Anchors</td>
</tr>
<tr>
<td>055000</td>
<td>Metal Fabrications</td>
</tr>
<tr>
<td></td>
<td>Division 7 – Thermal and Moisture Protection</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
</tr>
<tr>
<td></td>
<td>Division 9 - Finishes</td>
</tr>
<tr>
<td>099100</td>
<td>Painting</td>
</tr>
<tr>
<td></td>
<td>Division 26 – Electrical</td>
</tr>
<tr>
<td>260510</td>
<td>Electrical Design and Equipment</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical Systems</td>
</tr>
<tr>
<td>260544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
</tbody>
</table>
Wayne State University
Biology Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>262200</td>
<td>Low-Voltage Transformers</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
</tr>
<tr>
<td>263353</td>
<td>Static Uninterruptible Power Supply</td>
</tr>
</tbody>
</table>
PART 1 - GENERAL

1.1 SUMMARY

A. Selected labor are shown and specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual labor to a later date.

1. Cash Allowances: Base bid shall include an allowance to cover costs associated with premium time associated with overtime work in amount of $5,000.00. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

B. Type of allowance is "Lump-sum" cash allowance.

1.4 SUBMITTALS

A. Submit in writing to the WSU Rep in advance allocation of expected monies required to perform pre-approved work.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 – EXECUTION (NOT APPLICABLE)

3.1 SCHEDULE OF CASH ALLOWANCES

END OF SECTION 012100
OPERATION AND MAINTENANCE DATA

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Emergency manuals.
3. Operation manuals for systems, subsystems, and equipment.
4. Product maintenance manuals.
5. Systems and equipment maintenance manuals.

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.

1. WSU representative will comment on whether content of operations and maintenance submittals are acceptable.
2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

B. Format: Submit operations and maintenance manuals in the following format:

 a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
b. Enable inserted reviewer comments on draft submittals.

2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Architect, through Construction Manager, will return two copies.

C. Initial Manual Submittal: Submit draft copy of each manual at least 30 days before commencing demonstration and training. Architect and Commissioning Authority will comment on whether general scope and content of manual are acceptable.

D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect and Commissioning Authority will return copy with comments.

1. Correct or revise each manual to comply with Architect's and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's and Commissioning Authority's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents.
2.2 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name and contact information for Contractor.
6. Name and contact information for Construction Manager.
7. Name and contact information for Architect.
8. Name and contact information for Commissioning Authority.
9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
10. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.

1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.

1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.

5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:

 1. Type of emergency.
 2. Emergency instructions.
 3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:

 1. Fire.
 2. Flood.
 5. Power failure.
 7. System, subsystem, or equipment failure.
8. Chemical release or spill.

C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:

1. Instructions on stopping.
2. Shutdown instructions for each type of emergency.
3. Operating instructions for conditions outside normal operating limits.
4. Required sequences for electric or electronic systems.
5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

2. Performance and design criteria if Contractor has delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
OPERATION AND MAINTENANCE DATA

4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:

1. Inspection procedures.
2. Types of cleaning agents to be used and methods of cleaning.
3. List of cleaning agents and methods of cleaning detrimental to product.
4. Schedule for routine cleaning and maintenance.
5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:

1. Standard maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 1. Do not use original project record documents as part of operation and maintenance manuals.
 2. Comply with requirements of newly prepared record Drawings in Section 017839 "Project Record Documents."

END OF SECTION 017823
SECTION 031000 – CONCRETE FORMWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the design, installation and removal of forms for cast-in-place concrete.

B. Related Sections include the following:
 1. Division 3 Section “Cast-In-Place Concrete.”

C. Division of Work:
 1. In accordance with the General Conditions, Contractor is responsible for dividing the Work among the Subcontractors and Suppliers and for delineating the work to be performed by specific trades. The following are suggestions as to how the Work may be divided. This is not a complete list of all the work:
 a. Mechanical, Electrical and Plumbing Trades: Supply, locate and install premanufactured items including inserts, sleeves, and other embedded items required by those respective trades.
 b. Contractor: Coordinate location of mechanical, electrical and plumbing inserts, embedded parts, openings and recesses with respective trades.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following:
 1. ACI - American Concrete Institute:
 b. 301 - Standard Specifications for Structural Concrete for Buildings.
 c. 347R - Guide to Formwork for Concrete.

1.4 DESIGN AND PERFORMANCE REQUIREMENTS

A. Form Construction:
 1. Provide required forms, shores, bracing, breast timbers, form ties, and accessories in sufficient quantities so as not to delay the Work, and of strength to support vertical and horizontal loads to which they are subjected.
 2. Deflection: Maximum deflection of forms shall be 1/240 of span or 1/4-inch, whichever is less.

1.5 SUBMITTALS

A. Manufacturer's Literature: For form release agent.
1.6 QUALITY ASSURANCE

A. Design: The design and engineering of formwork, as well as its construction, shall be the responsibility of Contractor.

B. Notifications: Notify special inspector at least 24 hours in advance of placing concrete.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Formwork Facing Materials:
 1. Smooth Form Finish Areas:
 a. Locations: All locations unless otherwise noted.
 b. The form facing material shall produce a smooth, hard, uniform surface on the concrete.
 c. Form facing materials may be plywood, tempered concrete-form-grade hardboard, metal, plastic, paper; or other approved material capable of producing the desired finish.
 d. Facing materials shall be supported by studs or other backing capable of preventing deflections in excess of those specified herein.
 e. Material with damaged surfaces, worn edges, patches, dents or other defects which will impair the texture of the concrete surface shall not be used.

B. Chamfer Strips:
 1. Wood, metal, rubber, or PVC.
 2. Sizes as indicated, 3/4-inch x 3/4-inch minimum.

C. Form Release Agent:
 1. Products for General Use: Magic Kote by Symons, Crete-lease 727 by Cresset Company; or equal.
 2. Chemically neutral agent in hydrocarbon solvent that will effectively prevent absorption of moisture and prevent bond with the concrete.

PART 3 - EXECUTION

3.1 FORMWORK CONSTRUCTION

A. General:
 1. Align and secure joints to avoid offsets.
 2. Provide chamfered strips in exposed corners of exterior corners, internal corners and for similar conditions throughout the Work.
 3. The arrangement of facing material shall be orderly and symmetrical with the number of seams kept to the practical minimum.
 4. Retighten forms after concrete placement if required to eliminate mortar leaks.
 a. Securely brace temporary openings and set tightly to forms to prevent loss of concrete mortar.
 b. Locate temporary openings on forms at inconspicuous locations.
CONCRETE FORMWORK

B. Openings and Embedded Items:
 1. Set and build into the work anchorage devices and other embedded items required for work that is attached to, or supported by, cast-in-place concrete.
 2. Coordinate work of other Sections and cooperate with trade involved in forming and setting openings, slots, recesses, chases, sleeves, bolts, anchor and other inserts.
 3. Use setting drawings, diagrams, instructions and directions provided by Suppliers of the respective items.
 4. Do not perform work unless specifically indicated on Drawings or reviewed prior to installation.

C. Cleaning:
 1. Clean forms as erection proceeds, to remove foreign matter.
 2. Remove cuttings, shavings and debris from within forms.
 3. Flush with water or use compressed air to remove remaining foreign matter.
 4. Ensure that water and debris drain to exterior through clean-out ports.
 5. When forms are extended for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close joints.
 6. Thoroughly clean embedded waterstops and concrete surfaces prior to constructing forms for the next pour.

D. Applying Form Release Agent:
 1. Temperature of release agent and surfaces to which it is applied shall be a minimum of 70 degrees F.
 2. Apply by spray only.
 3. Uniformly coat surfaces with a thin film.
 4. Wipe off excess with clean towels.
 5. Apply in accordance with Manufacturer's recommendations.
 6. Do not allow to stand in puddles in the forms and prevent bonding of concrete at construction joints.

E. Provisions for Form Removal:
 1. Fabricate forms for easy removal without hammering or prying against the concrete surfaces.
 2. Kerf wood inserts for forming keyways, reglets, recesses and the like to prevent swelling and for easy removal.

3.2 FORM AND SUPPORT REMOVAL

A. Forms and supports shall remain in place for not less than the following periods of time:
 1. Housekeeping Pad: 12 to 24 hours.

B. In any event, do not remove forms and supports until concrete in walls has reached 30% of design strength, and in structural members and slabs has reached 75% of design strength.

C. Special precautions shall be taken when concrete is placed in average temperatures of 50 degrees F or below to ensure that forms are not removed before design strengths specified above are met.

D. Remove forms in such a manner and at such times as required to ensure safety of persons involved and so as to protect and maintain structural integrity of members.
E. Particular care shall be taken in removing forms to minimize damage to concrete surfaces; use crush or wrecking plates as necessary.

F. Whenever the formwork is removed, cure the exposed concrete as specified under Division 3 Section “Cast-in-Place Concrete.”

3.3 FIELD QUALITY CONTROL

A. Inspect and check completed formwork, shoring and bracing to ensure that work is in accordance with formwork design, and that supports, fastenings, wedges, ties and parts are secure.

B. Form Surface Repairs:
 1. Repair surfaces of forms to be reused in the work.
 2. Split, frayed, delaminated or otherwise damaged form facing material will not be acceptable.
 3. Apply new form release agent to new concrete contact form surfaces.
 4. Do not use patched forms for exposed concrete surfaces.

END OF SECTION 031000
SECTION 033000 – CAST IN PLACE CONCRETE

PART 1 – GENERAL

1.1 SUMMARY

A. Work Included: Cast in place concrete.
 1. Housekeeping pads.

1.2 QUALITY ASSURANCE

REFERENCE STANDARDS

A. Comply with the latest editions of the following design guides and standards:
 1. ACI 301 “Specifications for Structural Concrete for Buildings”
 2. ACI 302 “Guide for Concrete Floor and Slab Construction”
 3. ACI 304 “Recommended Practice for Measuring, Mixing, Transporting, and Placing Concrete:”
 4. ACI 315 “Details and Detailing of concrete Reinforcement”
 5. ACI 318 “Building Code Requirements for Structural Concrete”
 6. ACI 347 “Recommended Practice for Concrete Formwork”

1.3 SUBMITTALS

A. Shop Drawings: Submit Shop Drawings for fabrication, bending, and placement of concrete reinforcement. Show bar bending schedules, stirrup spacing, diagrams of bent bars, and arrangements of concrete reinforcement.

B. Mix Designs: Submit proposed mix designs for concrete at least 15 days before start of concreting. Submittal shall include: cement content and type, admixture content and type, aggregate source and gradation, water content, air content, slump, yield, and documentation of average strength by field experience method or laboratory prepared trial mixtures in accordance with ACI 318 Article 4.3.

C. Product Data: Submit data and installation instructions for proprietary materials.

D. Material Certificates: Submit materials certificates certifying that each material complies with Specifications.

1.4 TESTING SERVICES

A. Owner will engage a testing laboratory acceptable to the Architect-Engineer to perform material evaluation tests and for quality control during placement.
033000

CAST IN PLACE CONCRETE

B. Sample and test concrete for quality control during placement as follows:
 1. Compressive Strength Test: ASTM C39, one set of six cylinders for each 50 cubic yards or fraction thereof, of each concrete class placed in any one day, two lab specimens tested at 7 days, two lab specimens tested at 28 days and two specimens retained in reserve for later testing if required.

C. Test Reports
 1. Forward results to Architect-Engineer and Contractor on same day that tests are made.
 2. Reports of compressive strength tests shall contain the general information of project identification name and number, date of concrete placement, name of Contractor, name of concrete supplier, truck number and delivery ticket number, name of concrete testing agency, concrete type and class, name of individual making specimen, location of concrete batch in structure, design compressive strength at 28 days, concrete mix proportions and materials; and the specific information of compressive strength and type of break for both 7-day and 28-day tests.
 3. Field reports of concrete inspection shall contain general information noted above, plus cylinder numbers.

D. Additional Testing
 1. Testing agency shall make additional test of in-place concrete when test results indicate specified concrete strengths and other characteristics have not been attained in the structure.
 2. Testing agency shall conduct tests to determine adequacy of concrete cored cylinders complying with ASTM C42 or by other methods acceptable to Architect-Engineer.
 3. Contractor shall pay for such tests conducted, and any other additional testing required, if concrete testing confirms specified strengths have not been met.

1.5 JOB CONDITIONS

A. Store materials so as to ensure preservation of their quality and fitness for the Work. Store reinforcement and formwork in a manner to prevent damage and accumulation of dirt.

B. Contractor shall be responsible for correction of concrete work which does not conform to specified requirements, including strength, tolerances and finishes. Correct deficient concrete as directed by Architect-Engineer.

PART 2 – PRODUCTS

2.1 MATERIALS

A. Formwork
CAST IN PLACE CONCRETE

1. Exposed Concrete: Unless otherwise shown or specified, construct formwork for concrete surfaces, which will be exposed to view in the completed project, with form plywood, metal or other acceptable panel-type material, to provide continuous, straight, smooth exposed surfaces. Furnish in largest practicable sizes to minimize number of joints and to conform to joint system show on Drawings. Provide form material with sufficient thickness to withstand pressure of newly-placed concrete without bow or deflection.

B. Form Coatings: Commercial formulation form-coating compounds shall not bond with, stain, nor adversely affect concrete surfaces, and shall not impair subsequent treatments of concrete surfaces requiring bond or adhesion, nor impede wetting of surfaces to be cured with water or curing compound.

C. Reinforcement
 1. Deformed bars: ASTM A615, Grade 60.
 3. All chairs, spacers, clips, wire anchors and related items necessary to accurately space and secure reinforcement.
 4. Additional bars, if required, to anchor or space reinforcement.
 5. Chairs shall be plastic booted at points of bearing on forms for exposed concrete.
 6. Minimum 16-gauge annealed tie wire, ASTM A82.

D. Cement: ASTM C150, Type I or Type II.

E. Aggregates: ASTM C33 and as herein specified.
 1. Fine Aggregate: Clean, sharp, natural sand free from loam, clay, lumps or other deleterious substances with less that 10% passing the #100 sieve and less than 3% passing the #200 sieve.
 2. Coarse Aggregate: Clean, uncoated, processed aggregate containing no clay, mud, loam or foreign matter, as follows:
 a. Crushed stone: Processed from natural rock or stone for concrete slabs meeting MDOT 6AA, with a ¾ inch maximum aggregate size.
 b. Clean, sharp, natural or processed gravel, or, crushed stone, free from loam, clay, lumps, or other deleterious substances for footings and miscellaneous concrete.
 c. Maximum aggregate Size: Pads – ¾”.

F. Water: Clean, fresh, and potable.

G. Water Reducing Admixture: ASTM C494, Type A.

H. Non Corrosive, Non Chloride Accelerator: ASTM C494, Type C or E.

I. Prohibited Admixtures: Calcium chloride, thiocyanates. Admixtures containing more than 0.05% chloride ions are not permitted.
J. Evaporation Retarder: Confilm by Master Builders, or accepted equal.

K. Curing Sheet Materials: ASTM C171, including waterproof paper, polyethylene film or polyethylene coated burlap.

L. Liquid Membrane Curing/Sealing Compound: Masterkure by Master Builders or accepted equal.

2.2 PROPORTIONING AND MIX DESIGN

A. Prepare design mixes for concrete. Use independent testing facility acceptable to Architect-Engineer for preparing and reporting proposed mix designs.

B. Where the concrete production facility can establish the uniformity of its production for concrete of similar strength and materials based on recent test data, the average strength used as a basis for determining mix design proportions shall exceed the specified design strength by the requirements of ACI 318, section 4.3.2 or ACI 301, Section 3.9.

C. Concrete Quality

<table>
<thead>
<tr>
<th>Location</th>
<th>Required 28 day Compressive Strength</th>
<th>Maximum Water/Cement Ratio</th>
<th>Air-Content</th>
<th>Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housekeeping Pad</td>
<td>3,000 psi</td>
<td>0.55</td>
<td>-</td>
<td>147 – 153 pcf</td>
</tr>
</tbody>
</table>

D. Slump

1. Housekeeping Pad: 3” to 5”.

E. Ready Mix Concrete: ASTM C94.

F. The quantity of coarse aggregate in pounds must be in the range of 1.25 to 1.5 times the quantity of fine aggregate in pounds.

G. Pumping of concrete is permitted only if mix designs specifically prepared and used previously for pumping are submitted. Pumpline shall have a 5-inch minimum inside diameter and shall be used with 5-inch pumps.
1.3 REINFORCING FABRICATION

 A. Fabricate bars to required lengths, shapes and bends. Do not rebend or straighten reinforcement in a manner that shall weaken the material

1.4 FORMWORK

 A. Design formwork to support vertical and lateral loads that might be applied until such loads can be supported by concrete structure.

PART 3 – EXECUTION

3.1 INSPECTION

 A. Examine conditions under which concrete shall be placed. Do not proceed with work until all unsatisfactory conditions are corrected.

3.2 NOTIFICATION

 A. Notify Architect-Engineer 24 hours before anticipated time of completion of reinforcement in any section.

 B. Do not place concrete until reinforcement has been observed and corrections, if any, made.

3.3 FORMWORK INSTALLATION

 A. Erect, brace, and maintain formwork to support vertical and lateral loads.

 B. Construct forms to sizes, lines and dimensions shown to obtain accurate alignment, location, grades, level and plumb work in finished structure.

 C. Provide for openings, offsets, keys and other features required in work. Accurately position and support items.

 D. Solidly butt joints and provide backup at joints to prevent leakage of cement paste.

 E. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces.

 F. Kerf wood inserts for forming keys and the like to prevent swelling and for easy removal.

 G. Provide openings in concrete form to accommodate work of other trades. Determine size and location of openings, recesses and chases from trades providing such.
CAST IN PLACE CONCRETE

H. Cleaning and Tightening: Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt or other debris just before concrete is placed. Retighten forms after concrete placement if required to eliminate concrete leaks.

I. Reuse of Forms: Clean and repair surfaces of forms to be reused in the work. Split, frayed, delaminated, or otherwise damaged form facing material is not acceptable. Apply new form coating compound material. When forms are reused for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close all joints. Align and secure joints to avoid offsets.

3.4 REINFORCEMENT PLACING

A. Clean reinforcement of loose rust, mill scale, earth, ice and other materials which reduce or destroy bond with concrete.

B. Accurately position, support and secure reinforcement against displacement by formwork, construction or concrete placement operations. Locate and support reinforcement by metal chairs, runners, bolsters, spacers and hangers as required. Do not use brick.

C. Place reinforcement to obtain at least the minimum coverage’s for concrete protection.

D. Arrange, space and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.

E. Lap bar splices as indicated. Stagger splices in adjacent bars. Wire tie all splices.

3.5 WELDED WIRE FABRIC REINFORCEMENT PLACEMENT

A. Place welded wire fabric one-third of the slab thickness below top surface of slab.

B. Place flat sheets in as long lengths as practical. Lap adjoining sheets at least one full mesh. Offset laps to prevent continuous laps in either direction.

C. Do not continue welded wire fabric through any control joints or construction joints for slabs on grade.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, reinforcing steel and items to be embedded or cast in the concrete.
B. Notify other trades to permit installation of their work. Cooperate with other trades in setting such work as required.

C. Install anchor bolts and sleeves.

D. Deposit concrete continuously or in layers of such thickness that no concrete shall be placed on concrete which has hardened sufficiently to cause formation of seams or planes of weakness within section. Provide construction joints if section cannot be placed continuously.

E. Deposit concrete as nearly as practicable to its final location to avoid segregation caused by rehandling or flowing.

F. Maximum drop of concrete shall not exceed 5 feet. Use hopper and trunk for greater drops.

G. Contractor shall be responsible for controlling the proper placing of all embedded pipe, conduit and other embedded items.

H. Contractor shall be responsible for finishing of all concrete slabs to proper elevations to insure that all surface moisture will drain freely to floor drain, and that no puddle areas exist. During finishing operation, Contractor shall pay particular attention to this criterion, and shall make all efforts to obtain this. Any cost of corrections to provide for this positive drainage will be the responsibility of Contractor.

3.7 CONSOLIDATION

A. Consolidate placed concrete by mechanical vibrating equipment supplemented by hand spading, rodding or tamping.

B. Do not use vibrators to transport concrete inside formwork.

C. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing segregation of mix.

D. Do not allow vibrator to come in contact with form.

3.8 SURFACE FINISHES

A. Finish of Formed Surfaces:
 1. Smooth Form Finish: For formed concrete surfaces exposed to view. This is as cast concrete surface obtained with selected form facing material, arranged orderly and symmetrically with a minimum of seams. Repair and patch defective areas with fins or other projections completely removed and smoothed. Lightly rub all exposed surfaces to
achieve a uniform appearance. Or Lightly sandblast to expose fine aggregate with occasional exposure of coarse aggregate and to make the color uniform.

1.9 CURING AND PROTECTION

A. Concrete shall be protected from premature drying, excessively hot or cold temperature, and mechanical injury according to provisions of ACI 301, Chapter 12. During placing, all concrete flatwork exposed to or subject to rapid evaporation of moisture under drying conditions (including hot weather, low humidity, wind and/or sunlight) shall be protected immediately following screeding with evaporation retarder applied in accordance with recommendations of manufacturer. Application shall precede and shall be in addition to curing specified below.

B. Concrete shall be maintained in a continuously moist condition for at least 7 days after placement. Curing shall begin as soon as possible after concrete has been placed and finished. Materials and methods of curing shall be submitted to Architect-Engineer for review and approval.

C. Curing and Protection: Surfaces not in contact with forms and surfaces in contact with forms for less than seven days.
1. Curing shall be by water curings, application of liquid membrane curing/sealing compound or by application of sheet curing materials. Curing compounds shall be applied in accordance with manufacturer’s recommendations. Liquid membrane curing compound used on floor slabs receiving applied finish flooring shall be guaranteed by the manufacturer, in writing, not to impair bonding of adhesive.
2. For slabs use a curing treatment of water curing, curing sheet materials, or by applying and removing curing/sealing compound. The curing compounds must be applied immediately after final finishing. For curing by water curing or curing sheet materials, the concrete must be continually moist-cured for at least 7 days. Curing shall begin immediately after finishing.

1.17 REPAIR OF SURFACES

A. Contractor shall be responsible for cost of repairing defects.

B. Repair defective pad areas as follows:
1. Correct flatness and levelness defects by grinding or removal and replacement of slab. Patching of low spots will not be permitted.
2. For cracks less than 1/32 inch, no repairs are required. For cracks greater than 1/32 inch, use crack repair material. For cracks over 1/8 inch, fill crack with oven-dried sand prior to application of crack repair material, as recommended by manufacturer. Contractor also has option to remove and rebuild areas of cracking. Mask cracks to limit crack repair material to crack only.

END OF SECTION 033000
SECTION 050940 – POST-INSTALLED ANCHORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the furnishing and installation of post-installed anchors.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following pertinent provisions:
 1. ASTM:
 a. A36 - Carbon Structural Steel.
 b. A198 - Steel Bolting Materials for High-Temperature Service.
 d. A307 - Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength.
 e. A510 - General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel.
 g. B633 - Electrodeposited Coatings of Zinc on Iron and Steel.
 h. E488 - Strength of Anchors in Concrete and Masonry Elements.
 i. E1512 - Testing Bond Performance of Bonded Anchors.
 j. F436 - Hardened Steel Washers.
 k. F844 - Washers, Steel, Plain (Flat), Unhardened for General Use.
 2. ACI 318-02, Appendix D - Anchoring to Concrete.

1.4 SUBMITTALS

A. Product Data: For All Members to be Furnished:
 1. Base material being fastened to.
 2. Anchor embedment depth in base material.

1.5 QUALITY ASSURANCE

A. Installation Personnel Qualifications:
 1. Trained and experienced in the type of work being performed.
 2. Knowledgeable of the specific manufacturer’s requirements for quality installation of post-installed anchors.

B. Inspection of Post-Installed Anchor Installation: Field instruction and inspection during the installation process by Manufacturer’s authorized field representative shall take place at the discretion of Engineer. The General Contractor may utilize such instruction and inspection at any
time without the authorization of Engineer. Any costs which may be associated with such services shall be paid for by the General Contractor.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Post-Installed Anchor Material:
 1. Anchors that resist loads through mechanical friction or keying forces:
 a. Expansion Anchors:
 1) Wedge style anchor.
 2) Capable of sustaining an ultimate load of 6 times the imposed load capacity in unit masonry and 4 times the imposed load capacity in concrete when tested in accordance with ASTM E488.
 3) Hilti Kwik Bolt III; Powers Power-Stud; or equal.
 4) Stainless steel in accordance with ASTM F593.
 b. Sleeve Anchors:
 1) Expanding sleeve style anchor.
 2) Hilti LLC or LSL heavy duty sleeve anchors; Powers Lok/Bolt sleeve anchor; or equal.
 3) Hex, acorn, round or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 5) Dry Areas: Mild steel, galvanized in accordance with ASTM B633.
 c. Undercut Anchors:
 1) Expanding sleeve, self-undercutting wedge style anchor.
 2) Hilti HDA Undercut Anchors; Powers Power-Bolt Anchors; or equal.
 3) Hex or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 2. Anchors that resist loads through an injectable chemical adhesive:
 a. In Concrete: Hilti HIT HY-150, HIT-ICE, HIT-T2, HIT-RE 500 and HSE 2421; Powers Power-Fast; or equal.
 b. Anchored Material: Deformed reinforcing bars as indicated on the Drawings.
 c. Bonding Strength: Tested in accordance with ASTM E1512.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install Post-Installed Anchors:
 1. In strict accordance with the installation instructions supplied by the Manufacturer.
 2. Under the direction and Site supervision of the Manufacturer’s authorized field representative when directed to do so by the Project Engineer.
 3. In drilled out holes of the proper depth and diameter cleaned of dust and debris according to the Manufacturer’s specific installation instructions.
050940

POST-INSTALLED ANCHORS

B. Post installed anchors anchored to substrate with an injectable adhesive shall have no load applied until adhesive has properly cured and developed specified strength where cure time shall be as called out in the Manufacturer’s literature based on prevailing environmental conditions at the time of installation.

END OF SECTION 050940
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For penetration firestopping sealants and sealant
 primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4.1: For penetration firestopping sealants and
 sealant primers, documentation indicating that products comply with the testing and
 product requirements of the California Department of Public Health's "Standard Method
 for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor
 Sources Using Environmental Chambers."
 C. Product Schedule: For each penetration firestopping system. Include location, illustration of
 firestopping system, and design designation of qualified testing and inspecting agency.
 1. Engineering Judgments: Where Project conditions require modification to a qualified
 testing and inspecting agency's illustration for a particular penetration firestopping
 system, submit illustration, with modifications marked, approved by penetration
 firestopping system manufacturer's fire-protection engineer as an engineering judgment
 or equivalent fire-resistance-rated assembly. Obtain approval of authorities having
 jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
PENETRATION FIRESTOPPING

B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Grace Construction Products.
 3. Hilti, Inc.
 5. Johns Manville.
 6. NUCO Inc.
PENETRATION FIRESTOPPING

8. RectorSeal Corporation.
9. Specified Technologies Inc.
10. 3M Fire Protection Products.
12. USG Corporation.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:
 1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
 2. Test per testing standards referenced in "Penetrati on Firestopping Systems" Article. Provide rated systems complying with the following requirements:
 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.
 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Global in its "Building Materials Approval Guide."
 4) Owner will engage a qualified testing agency to perform tests and inspections.

2.3 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.
D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg (74.7 Pa).

1. L-Rating: Not exceeding 5.0 cfm/sq. ft. (0.025 cu. m/s per sq. m) of penetration opening at and no more than 50-cfm (0.024-cu. m/s) cumulative total for any 100 sq. ft. (9.3 sq. m) at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.

F. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content:

1. Sealants: 250 g/L.
2. Sealant Primers for Nonporous Substrates: 250 g/L.
3. Sealant Primers for Porous Substrates: 775 g/L.

G. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

H. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.

1. Permanent forming/damming/backing materials.
2. Substrate primers.
3. Collars.
4. Steel sleeves.

2.4 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer sleeve lined with an intumescent strip, a flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced intumescent elastomeric sheet bonded to galvanized-steel sheet.

E. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.
F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

2.5 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.

2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches (76 mm) high and with minimum 0.375-inch (9.5-mm) strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet (4.57 m) from end of wall and at intervals not exceeding 30 feet (9.14 m).

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches (150 mm) of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
PENETRATION FIRESTOPPING

4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.

B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTOPPING SYSTEM SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.

B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under "Firestop Systems."

C. Where FM Global-approved systems are indicated, they refer to design numbers listed in FM Global's "Building Materials Approval Guide" under "Wall and Floor Penetration Fire Stops."

D. Penetration Firestopping Systems for Metallic Pipes, Conduit, or Tubing.

1. UL-Classified Systems: Match Existing
4. F-Rating: 2 hours.
5. T-Rating: 2 hours.
6. W-Rating: No leakage of water at completion of water leakage testing.
078413

PENETRATION FIRESTOPPING

7. Type of Fill Materials: As required to achieve rating.

END OF SECTION 078413
09 9100

PAINTING

SECTION 09900 PAINTING

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes surface preparation and field painting of the following:
 1. Exposed conduits and conduit support stanchions and plates.
 2. Wall painting to match existing where restoration is required.
 3. Surface preparation, priming, and finish coats specified in this Section are in addition to shop
 priming and surface treatments.
 B. Paint exposed surfaces of exposed conduits where approved by the Owner and walls that were
 disrupted to accommodate new electrical. Colors to match existing and/or adjacent utilities
 and/or walls. The entire wall section disrupted by new conduit penetrations shall be painted.
 C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and
 labels.

1.3 SUBMITTALS
 A. Product Data: For each paint system specified. Include block fillers and primers.
 1. Material List: Provide an inclusive list of required coating materials. Indicate each material
 and cross reference specific coating, finish system, and application. Identify each material by
 manufacturer's catalog number and general classification.
 2. Manufacturer's Information: Provide manufacturer's technical information, including label
 analysis and instructions for handling, storing, and applying each coating material proposed
 for use.
 B. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors avail-
 able for each type of finish coat material indicated.

1.4 QUALITY ASSURANCE
 A. Source Limitations: Obtain block fillers, primers, and undercoat materials for each coating sys-
 tem from the same manufacturer as the finish coats.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers
 bearing manufacturer's name and label.
 B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum
 ambient temperature of 45 deg F. Maintain containers used in storage in a clean condition, free
 of foreign materials and residue.
 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste dai-
 ly. Take necessary measures to ensure that workers and work areas are protected from fire
 and health hazards resulting from handling, mixing, and application.

1.6 PROJECT CONDITIONS
 A. Do not apply paint in when the relative humidity exceeds 85 percent; or at temperatures less than
 5 deg F above the dew point; or to damp or wet surfaces.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products in the paint schedules.
B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 - Benjamin Moore & Co.
 - O'Leary Paint Co.
 - PPG Industries, Inc.
 - Pratt & Lambert, Inc.
 - Standard Detroit Paint Co.
 - Sherwin Williams Co.

2.2 PAINT MATERIALS, GENERAL

A. Material Compatibility: Provide block fillers, primers, undercoats, and finish coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
B. Material Quality: Provide manufacturer's best quality paint material of the various coating types specified. Paint material containers not displaying manufacturer's product identification will not be acceptable.
C. Colors: Provide colors selected by the Owner to match existing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.
 1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.
B. Provide seven days' notice to the Owner's Representative prior to the application of epoxy paints.
C. Coordination of Work: Ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.
 1. Notify the Owner about anticipated problems using the materials specified over substrates primed by others.

3.2 PREPARATION

A. Cleaning, General: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.
 1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
B. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition and as specified.

1. Provide barrier coats over incompatible primers or remove and reprime.

2. For coatings applied over previously painted surfaces, test application to check for lifting and other adhesion problems. Perform test in an isolated area where practicable.

3. Ferrous Metals: Clean ungalvanized ferrous metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with the Steel Structures Painting Council's (SSPC) recommendations.
 a. Treat bare and sandblasted or pickled clean metal with a metal treatment wash coat before priming.
 b. Touch up bare areas and shop applied prime coats that have been damaged. Wire brush, clean with solvents recommended by paint manufacturer, and touch up with the same primer as the shop coat.

C. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.

1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.

2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.

3. Use only thinners approved by paint manufacturer and only within recommended limits.

3.3 APPLICATION

A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.

1. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.

2. Provide finish coats that are compatible with primers used.

B. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.

1. The number of coats and the film thickness required are the same regardless of application method. Do not apply succeeding coats until the previous coat has cured as recommended by the manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer's written instructions, sand between applications.

2. Omit primer on metal surfaces that have been shop primed and touchup painted.

3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.

4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, does not deform or feel sticky under moderate thumb pressure, and where application of another coat of paint does not cause the undercoat to lift or lose adhesion.

C. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer's written instructions.

1. Brushes: Use brushes best suited for the type of material applied. Use brush of appropriate size for the surface or item being painted.
PAINTING

2. Rollers: Use rollers of carpet, velvet back, or high pile sheep's wool as recommended by the manufacturer for the material and texture required.
3. Spray Equipment: Use airless spray equipment with orifice size as recommended by the manufacturer for the material and texture required.

D. Minimum Coating Thickness: Apply paint materials no thinner than manufacturers recommended spreading rate. Provide the total dry film thickness of the entire system as recommended by the manufacturer.

E. Prime Coats: Before applying finish coats, apply a prime coat of material, as recommended by the manufacturer, to material that is required to be painted or finished and that has not been prime coated by others. Recoat primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn through or other defects due to insufficient sealing.

F. Pigmented (Opaque) Finishes: Completely cover surfaces as necessary to provide a smooth, opaque surface of uniform finish, color, appearance, and coverage. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, repines, or other surface imperfections will not be acceptable.

G. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.

3.4 CLEANING

A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
 1. After completing painting, clean glass and paint spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.
 2. Dispose wash water from latex paint to the sanitary sewer. Excess latex paint shall be salvaged for reuse or solidified for disposal with other construction materials. Dry empty latex paint cans and dispose with other construction materials. Coordinate disposal of alkyd paints and solvents with University project manager.

3.5 PROTECTION

A. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.

B. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.
 1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

END OF SECTION 09900
PART 1 - GENERAL

1.1 SCOPE OF SUPPLY

This section includes design, performance, and technical requirements for Supplier-furnished electrical equipment. The scope of supply shall include the following items:

- Low voltage power distribution equipment, including the following:
 - Low voltage switchboards.
 - Low voltage panelboards.
 - Dry type transformers.

1.2 ITEMS FURNISHED BY OTHERS AND INTERFACES

Items furnished by others and not in this scope of supply are identified as follows:

(Later)

1.3 PERFORMANCE AND DESIGN REQUIREMENTS

Performance and design requirements for the Supplier-furnished electrical equipment are as required by Supplier's design, as indicated in Article 16051.2, on the Electrical Design and Equipment Data Sheets included at the end of this section, and as follows:

<table>
<thead>
<tr>
<th>Design ambient temperature</th>
<th>104° F (40° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site elevation</td>
<td>Less than 3,300 ft (1,000 m)</td>
</tr>
</tbody>
</table>

1.4 CODES AND STANDARDS

Work performed under these specifications shall be done in accordance with the following codes and standards. Unless otherwise specified, the applicable governing edition and addenda to be used for all references to codes or standards specified herein shall be interpreted to be the jurisdictionally approved edition and addenda. If a code or standard is not jurisdictionally mandated, then the current edition and addenda in effect at the date of this document shall apply. These references shall govern the work except where they conflict with the Purchaser's specifications. In case of conflict, the latter shall govern to the extent of such difference:
1.5 NOT USED

1.6 APPROVED MANUFACTURERS OF COMPONENTS

For the following components, only the listed manufacturers are recognized as maintaining the level of quality of workmanship required by these specifications. If the Supplier wants to propose a non-listed manufacturer that is considered to provide an equivalent level of quality, this manufacturer must be identified and supporting testimony provided. Acceptance of the manufacturer as a substitute is at the discretion of the Purchaser:

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
</tr>
</thead>
</table>

1.7 NOT USED

1.8 NOT USED
PART 2 – PRODUCTS

2.1

2.1.2 Power Circuit Breakers

The switchgear shall be furnished with high voltage power circuit breakers of standard
drawout design with the following design features:

Shall not be forced cooled.

All secondary device contact surfaces and main contact surfaces shall be
silver-to-silver, designed and fabricated to be self-aligning and to resist
burning and deterioration.

Removable breaker units of the same type and ampere capacity shall be wired
alike and shall be mechanically and electrically interchangeable.

Shall be a 3-pole single-throw unit, complete with operating mechanism and
other required devices, mounted on a drawout type carriage. Each operating
mechanism shall be of the stored energy type with a closing coil and single
shunt trip coils. The closing devices, tripping devices, and charging motor
shall be designed and rated for operation on the nominal control voltage
specified.

Operating mechanisms shall be trip-free in any position and shall be
antipump. The breaker main contacts shall not touch or arc across into a
faulted circuit when a breaker close signal is received while a trip signal is
being applied.

Each breaker shall be furnished with a manual trip push button which
mechanically trips the breaker. The manual trip push button and its associated
breaker trip linkage shall have no common components with the electrical trip
mechanism, except the final breaker release device.

Each breaker shall be furnished with an operations counter which shall be
readable from the front of the switchgear unit with the breaker in the
connected position.

2.1.2.1 Rating

Power circuit breakers furnished under these specifications shall be provided with the
ratings as required by the Supplier's design. All current ratings shall be at least
10 percent greater than the values required by the design. Voltage ratings shall be in
accordance with the indicated industry standards for the nominal system voltage
utilized.

2.1.2.2 Auxiliary contacts
Each breaker shall be furnished with a sufficient number of auxiliary contacts and auxiliary switch contacts to provide all necessary interlocks for operation of the breaker. In addition, two normally open and two normally closed sets of spare contacts shall be provided and wired out to terminal blocks for use by the Purchaser.

Breaker mechanism operated auxiliary switches shall operate only when the breaker is in the connected position.

2.1.2.3 Breaker control devices
Each remotely controlled breaker shall be furnished with a local control switch and breaker position switch arranged to provide the following control of breaker operation:

<table>
<thead>
<tr>
<th>Breaker Drawout Position</th>
<th>Breaker Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remote Control</td>
</tr>
<tr>
<td></td>
<td>Close</td>
</tr>
<tr>
<td>Connected</td>
<td>X</td>
</tr>
<tr>
<td>Test</td>
<td>--</td>
</tr>
<tr>
<td>Disconnected</td>
<td>--</td>
</tr>
</tbody>
</table>

Each circuit breaker local control switch shall have a trip/close escutcheon, shall have a center normal position, shall be spring return to normal from close and trip, shall have red and green targets to indicate the latest operation of the switch, and shall be furnished with indicating lights. One set of these contacts shall be wired out to terminal blocks for use by the Purchaser.

The breaker position switch shall be furnished with four stages. Two breaker position switch contacts shall close only when the breaker is in the connected position; the remaining two contacts shall close only when the breaker is in the test position.

2.1.3 Power and Control Conductors

Switchgear power and control conductors shall be furnished in accordance with the requirements of the articles which follow. Provisions shall be made for bus expansion, to prevent undesirable or destructive mechanical strains in the bus supports and connections, through a full ambient temperature range from -13° F (-25° C) to +104° F (+40° C). Expansion joints shall be furnished where required.
2.2.6 Control Power

Electrical power for control and instrumentation shall be as required by Supplier's design.

Where dc control power is specified on the Electrical Design and Equipment Data Sheets, the Supplier shall provide a common bus throughout the controller assembly requiring a single connection of dc control power from the Purchaser. Suitable branch circuit protection and control power disconnecting means shall be provided for each controller unit.

The paragraphs which follow apply only to ac control power.

Where ac control power is specified on the Electrical Design and Equipment Data Sheets, all control power requirements necessary to operate each controller shall be provided by means of individual control power transformers. Each controller unit shall be provided with an individual transformer for control and instrumentation associated with that controller only.

Control power transformers shall be rated not less than 1 kVA. Each control power transformer shall be provided with primary and secondary fuses. The size of each control power transformer shall be clearly indicated on each section schematic and wiring diagram submitted for review.

Control power interlocking provisions shall be provided to allow testing of the control operation of each controller from an external source of control power with the contactor disconnected and isolated from the main bus.

Control power interlocking provisions shall not allow the control power transformer of the controller to be energized during testing as described above.

The Supplier shall furnish a manually operated switch to transfer the control power from the normal source to the external test circuit source.

2.2.7 NOT USED

2.2.8 Wiring and Wiring Diagrams

The Supplier shall provide internal wiring, connections, and diagrams in accordance with the requirements of the articles which follow.

2.2.8.1 Control and instrument wiring

All low voltage control and instrument wiring used within the controller assemblies.

All internal wiring shall be neatly and carefully installed and shall be terminated on terminal blocks or devices. Conductors and terminals shall be plainly lettered or
marked in accordance with the manufacturer's connection diagrams. Any controller assembly that is split for shipment shall have terminal blocks adjacent to the split and shall be provided with wiring required to interconnect the shipping sections.

All leads for external circuit wiring shall be connected to terminal blocks located for convenient connection of external circuits. Splices will not be permitted in control wiring or instrument leads.

The minimum sizes of wire used in the controller assembly for control and instrumentation shall be in accordance with the following table:

<table>
<thead>
<tr>
<th>Minimum Wire Service</th>
<th>Size, AWG (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supplies</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Current transformer circuits</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Indicating lights and annunciator circuits</td>
<td>16 (1.5)</td>
</tr>
<tr>
<td>All other wiring</td>
<td>14 (2.5)</td>
</tr>
</tbody>
</table>

All spare contacts on relays, control switches, limit switches, or similar devices shall be wired to accessible terminal blocks for the Purchaser's future connections. All wiring leaving an enclosure shall leave from terminal blocks and not from other devices within the enclosure.

Terminal blocks shall not be mounted in compartments containing cable or bus operating at voltages above 600 volts.

Control and potential buses, as required, shall be switchboard wire installed at the rear of the instrument and control compartment.

Each terminal block, conductor, relay, circuit breaker, fuse block, and other auxiliary devices and terminals shall be permanently labeled to coincide with the identification indicated on the drawings. All wiring terminations shall be identified by legible markings on the device terminals.

2.2.8.2 Diagrams

Wiring diagrams shall be in accordance with the requirements specified herein. Controller schematic, connection, and interconnection diagrams furnished by the Supplier shall be based on schematic (elementary) diagrams and connection diagrams furnished by the Purchaser.

The typical schematic diagram of each type of controller specified shall be submitted with the proposal.

The Supplier shall prepare his schematic (elementary), connection, and interconnection diagrams which shall have terminal designations and terminal arrangement acceptable to the Engineer.
The complete connection diagram of each controller unit shall be on an individual sheet. Information on each connection diagram sheet shall include point-to-point wiring of the entire controller as it will be physically constructed, including wiring on the contactor itself. Elementary diagrams of control and instrument circuits, contact arrangement of switches, and internal wiring of relays and instruments for each section shall be on additional sheets as required. Interconnection diagrams shall be on separate sheets. All sheets shall be the same size.

Information indicated on the Supplier's drawings shall include wiring of the individual units as they will actually appear in the assembly, contact arrangements of switches, and internal wiring of relays and instruments.

Each item of mounted equipment indicated on the diagrams shall be identified by item number and name.

2.2.8.3 Wiring method

If the wiring method is to be an internal programmable logic controller (PLC) as indicated on the Electrical Design and Equipment Data Sheets, then the Supplier shall furnish a Purchaser-approved PLC in each shipping split of each controller assembly. All control wiring from the device contacts and protective relays to the internal PLC shall be installed by the Supplier as indicated on the typical schematics. The Purchaser will program the PLCs as required.

If a remote PLC is to be used as indicated on the Electrical Design and Equipment Data Sheets, the Supplier has no responsibility to provide or connect device contacts and protective relays to the PLC.

2.2.9 Tightening of Connections

The Supplier shall include on his erection and assembly drawings complete information for tightening of all electrical connections secured with bolts or studs. The information furnished shall include torque wrench settings or complete details of other tightening procedures recommended for bus joints, connector attachments, and contact attachments.

2.3 NOT USED

2.4 Low Voltage Power Distribution Equipment

When specified to be in the Supplier's scope of supply, the Supplier shall supply low voltage power distribution equipment in accordance with the articles below and as required by the Supplier's design. The design shall be in accordance with accepted industry practices and standards for electrical power generation.

2.4.1 Low Voltage Panelboards and Switchboards
Low voltage power panelboards and switchboards shall be furnished in accordance with the following articles.

2.4.1 Enclosures

Panelboards and switchboards shall be furnished with enclosures of the types as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Description of Enclosure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoors - clean area</td>
<td>Indoor with gasketed cover, ventilated</td>
</tr>
<tr>
<td>Indoors - dusty area</td>
<td>Indoor dustproof enclosure, unventilated</td>
</tr>
<tr>
<td>Outdoors - protected</td>
<td>Combination outdoor/dustproof, unventilated</td>
</tr>
<tr>
<td>Outdoors - unprotected</td>
<td>Wash-down/dustproof, unventilated</td>
</tr>
<tr>
<td>Hazardous</td>
<td>Listed for conditions present</td>
</tr>
</tbody>
</table>

2.4.2 Busing

Main, neutral, and ground busing shall be copper. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design.

2.4.3 Circuit breakers

Main breakers shall be provided in all panelboards and switchboards. Main and feeder breakers shall be molded case, bolt-in type. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design. Breakers and busing shall be individually rated and labeled for the required short-circuit amperes available. Tandem or miniature circuit breakers shall not be used.

2.4.4 Spares

Total expected load on each panelboard or switchboard shall not exceed 80 percent of its continuous current rating. At least one spare feeder breaker of each size and number of poles used for loads shall be provided in each panelboard and switchboard. At least six poles of spare space shall be provided in each panelboard and switchboard.

2.4.2 Dry Type Distribution Transformers

Dry type distribution transformers shall be used indoors in dry areas only and shall meet the following requirements:
ELECTRICAL DESIGN AND EQUIPMENT

Shall have copper windings rated for 302° F (150° C) temperature (by resistance) rise above 104° F (40° C) ambient.

Shall be sized to approximately match the nominal ampacity of the panelboard or switchboard which is connected to its secondary terminals.

Sound level shall not exceed 45 dBA when measured in accordance with NEMA standards.

When installed in areas where dirt and dust are present, shall have filters installed on vent openings or shall be non-ventilated.

Shall be appropriately derated when the ambient temperature exceeds 104° F (40° C).

2.4.3 Nameplates

Engraved nameplates shall be furnished for the front of each item of equipment.

PART 3 – EXECUTION

Not Applicable.

END OF SECTION 260510
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
 B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

C. Multi-conductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for nonmetallic-sheathed cable, Type NM with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

E. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway, Armored cable, Type AC, Metal-clad cable, or Type MC as per applicable code.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

I. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

J. Branch Circuits in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

K. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.7 FIRESTOPPING
 A. Apply fire-stopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 C. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements.
 a. Panelboards, uninterruptable power sources, transformers, and associated switches.
 D. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
 E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.

B. Qualification Data: For testing agency and testing agency's field supervisor.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to Operation and Maintenance Data include the following:
 a. Instructions for periodic testing and inspection of grounding features
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 NOT USED

2.2 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications
 Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross
260526

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad 3/4 inch by 10 feet.

 1. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.

 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

D. Conductor Terminations and Connections:

 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 NOT USED

3.3 NOT USED

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Receptacle circuits.
4. Three-phase motor and appliance branch circuits.
5. Flexible raceway runs.
6. Armored and metal-clad cable runs.
7. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Owner’s representative promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawing: For fabrication and installation details for electrical hangers and support systems.

1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which hangers and supports will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Items penetrating finished ceiling, including the following:
 a. Access panels.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line,; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 7. Channel Dimensions: Selected for applicable load criteria.

B. Aluminum Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

2. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

4. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

5. Channel Dimensions: Selected for applicable load criteria.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing CO., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 4000psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.
260533

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits, tubing, and fittings.
2. Metal wireways and auxiliary gutters.
3. Surface raceways.

B. Related Requirements:

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NOT USED

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

A. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

B. Wireway Covers: Screw-cover type unless otherwise indicated.

C. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Surface Metal Raceways: Galvanized steel with snap on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Owner

2.5 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, with gasketed cover.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

F. Cabinets:
 1. NEMA 250, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 NOT USED

2.7 NOT USED

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Indoors: Apply raceway products as specified below unless otherwise indicated:

 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:

 a. Loading dock.
b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
c. Mechanical rooms.
d. Gyms.

4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Comply with NEMA FB 2.10.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

D. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Arrange stub-ups so curved portions of bends are not visible above finished slab.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. Support conduit within 12 inches of enclosures to which attached.
H. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

Q. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

U. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

3. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

4. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

V. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

W. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

X. Locate boxes so that cover or plate will not span different building finishes.

Y. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

AA. Set metal floor boxes level and flush with finished floor surface.

BB. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
3.3 NOT USED

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.5 FIRESTOPPING
 A. Install fire-stopping at penetrations of fire-rated floor and wall assemblies.

3.6 PROTECTION
 A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water-stop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
F. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, water-stop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber water-stop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 4000-psi 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLELING

2. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position water-stop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels, including arc-flash warning labels.
8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 Manufacturers:

A. Manufacturers: Subject to compliance with requirements:

2. Brady.
4. IEM Products, Inc.
5. Panduit.
7. Safety Label Solutions.
9. Utility Safeguard, LLC.

2.2 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F ambient; 180 deg F, material surfaces.

2.3 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

B. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

C. Warning labels and signs shall include, but are not limited to, the following legends:
1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.4 LABELS

A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pre-tensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.

C. Self-Adhesive Labels:
 1. Preprinted, 3-mil thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.
 2. Vinyl, thermal, transfer-printed, 3-mil thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 a. Nominal Size: 3.5-by-5 inch.
 3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 4. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.5 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pre-tensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.6 TAPES AND STENCILS:

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
260553

IDENTIFICATION FOR ELECTRICAL SYSTEMS

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4 inch wide black stripes on 10 inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.

D. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.7 Tags

A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.

B. Write-On Tags:

1. Polyester Tags: 0.010 inc thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.8 Signs

A. Laminated Acrylic or Melamine Plastic Signs:

1. Engraved legend.
2. Thickness:
 a. For signs up to 20 sq. inches, minimum 1/16-inch.
 b. For signs larger than 20 sq. inches, 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Punched or drilled for mechanical fasteners.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.
D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch centers. Stop stripes at legends. Apply stripes to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive vinyl labels. Install labels at 30-foot maximum intervals.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

D. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase-and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

F. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

G. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

H. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and hand-holes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

I. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive vinyl labels with the conductor designation.

J. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

L. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

M. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

N. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

O. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

P. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
Q. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch high letters for emergency instructions at equipment used for power transfer.

R. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Substations.
 h. Emergency system boxes and enclosures.
 i. Motor-control centers.
 j. Enclosed switches.
 k. Enclosed circuit breakers.
 l. Enclosed controllers.
 m. Variable-speed controllers.
 n. Push-button stations.
 o. Power-transfer equipment.
 p. Contactors.
 q. Remote-controlled switches, dimmer modules, and control devices.
 r. Battery-inverter units.
 s. Battery racks.
 t. Power-generating units.
 u. Monitoring and control equipment.
v. UPS equipment.

END OF SECTION 260553
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes: distribution, energy efficient dry-type transformers rated 600 V and less, with capacities up to 1500 kVA. Nominally: 408V 3Ø 60Hz delta input; transformer to output 208V 3Ø 60Hz/ (120V 1Ø).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For testing agency.
LOW VOLTAGE TRANSFORMERS

C. Source quality-control reports.
D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. GE Electrical Distribution & Control.
 3. Siemens Industries, Inc.
 4. Square D/Groupe Schneider NA.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.

D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
LOW VOLTAGE TRANSFORMERS

E. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper.

F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.

D. Enclosure: Ventilated.
 1. NEMA 250, type 2: Core and coil shall be encapsulated within resin compound utilizing a vacuum pressure impregnation process to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.

E. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: NSF/ANSI 61 gray.

F. Taps for Transformers 3 kVA and Smaller: None

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature. Chosen

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.

K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for non-sinusoidal load current-handling capability to the degree defined by designated K-factor. Chosen
LOW VOLTAGE TRANSFORMERS

1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
2. Indicate value of K-factor on transformer nameplate.
3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.

M. Neutral: Rated 200 percent of full load current for K-factor rated transformers.

N. Wall Brackets: Manufacturer's standard brackets or floor mounted.

O. Fungus Proofing: Permanent fungicidal treatment for coil and core.

P. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 1. 51 to 150 kVA: ~55 dBA+0-10
 2. 751 to 1000 kVA: ~70 dBA +0-10
 3. 1001 to 1500 kVA: ~70 dBA +0-10

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
 2. Ratio tests at the rated voltage connections and at all tap connections.
 3. Phase relation and polarity tests at the rated voltage connections.
 4. No load losses, and excitation current and rated voltage at the rated voltage connections.
 5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
 6. Applied and induced tensile tests.
 7. Regulation and efficiency at rated load and voltage.
 8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb.

1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

E. Remove and replace units that do not pass tests or inspections and retest as specified above.

F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.

2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS
 A. ATS: Acceptance testing specification.
 B. GFCI: Ground-fault circuit interrupter.
 C. GFEP: Ground-fault equipment protection.
 D. HID: High-intensity discharge.
 E. MCCB: Molded-case circuit breaker.
 F. SPD: Surge protective device.
 G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
262416

PANELBOARDS

2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F to plus 105 deg F.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet (2000 m).

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify WSU no fewer than two days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without WSU written permission.
3. Comply with NFPA 70E.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Enclosures: Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Height: 84 inches (2.13 m) maximum.

3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.

4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

7. Finishes:
 a. Panels and Trim: Galvanized Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Galvanized Steel.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
PANELBOARDS

F. Incoming Mains:

1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

G. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
7. Split Bus: Vertical buses divided into individual vertical sections.

H. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

I. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting
PANELBOARDS

and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

J. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: Ten percent.

K. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Panelboards, Overcurrent Protective Devices, Controllers, Contractors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.
PANELBOARDS

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker or lugs only.

G. Branch Overcurrent Protective Devices: Fused switches.

H. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

2.4 BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: lugs only.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.
F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. MCCB: Comply with UL 489, to meet available fault currents.
 1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.
 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."
2. Fused Switch Features and Accessories:
 a. Standard ampere ratings and number of poles.
 b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:
 1. Install panelboards on cast-in-place concrete equipment base(s) where applicable.
 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 3. Comply with requirements for seismic control devices.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90” above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
PANELBOARDS

J. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.

K. Mount surface-mounted panelboards to steel slotted supports 5/8 inch to 1 1/4 inch in depth. Orient steel slotted supports vertically.

L. Install overcurrent protective devices and controllers not already factory installed.

 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

M. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

N. Install filler plates in unused spaces.

O. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

P. Arrange conductors in gutters into groups and bundle and wrap with wire ties. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate.

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate.

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:

 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.

4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Isolated-ground receptacles.
5. Cord and Plug receptacles.
6. Communications outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
WIRING DEVICES

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from
mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.4 GFCI RECEPTACLES

A. General Description:
 1. Straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

2.5 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
 1. Description:
 a. Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
WIRING DEVICES

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.8 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: Per Owner, match existing in room or area of work.
 2. Wiring Devices Connected to UPS: Per Owner, Yellow.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
WIRING DEVICES

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Panelboards.
 b. Switchboards.
 c. Enclosed switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit [in electronic format suitable for use in coordination software and in PDF format.

5. Coordination charts and tables and related data.

6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data, include the following:
FUSES
1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS
A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 3. Ferraz Shawmut, Inc.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES
A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
 4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, time delay.
FUSES
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
7. Type T: 600-V, zero- to 800-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
1. Feeders: Class RK1, fast acting Class J, fast acting.
2. Power Electronics Circuits: Class J, high speed.
3. Other Branch Circuits: Class RK1, time delay.
4. Control Transformer Circuits: Class CC, time delay, control transformer duty.

3.3 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Non-fusible switches.
 3. Molded-case circuit breakers (MCCBs).
 5. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge fuse interiors to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
6. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
7. Lugs: Mechanical type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 5. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
 6. Lugs: Mechanical type, suitable for number, size, and conductor material.
 7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. See WSU design standards.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I2t response.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system,
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 8. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 9. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 12. Electrical Operator: Provide remote control for on, off, and reset operations.

2.4 MOLDED-CASE SWITCHES

A. NOT USED

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One NO contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, [Type 1] <Insert type>.
 2. Outdoor Locations: NEMA 250, Type 3R.
 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
B. Comply with mounting and anchoring requirements specified in section 260529.
C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges

END OF SECTION 262816
PART 1 - SCOPE

1.1 System

This specification describes a TOSHIBA model 4300 continuous duty, 50 kVA (45KW) three-phase, on-line, solid-state uninterruptible power supply system, hereafter referred to as the UPS.

1.2 Preferred UPS Vendor

The contractor is to purchase and supply the specified Toshiba UPS from WSU preferred UPS vendor (Ancona Controls). Contact information as follows:

WSU Assign Sales Rep: Beth Ancona
Ancona Controls
28021 Grand Oaks Ct.
Wixom, MI 48393
248-924-2747

PART 2 - SYSTEM DESCRIPTION

2.1 Applicable Standards

The UPS shall be designed in accordance with and be compliant with the following sections of the current revisions of the following standards:

- ANSI C62.41 (IEEE 587) – Standard for Surge Withstandability
- UL 1778 (UL listed)
- National Electrical Code (NFPA-70)
- FCC Part 15 Class A
- NEMA PE-1
- OSHA
- ASME
- ISO 9001, 14001

2.2 Components

The UPS shall consist of the following components:

A. Converter
B. Chopper / Charger
C. Pulse-Width Modulated (PWM) Inverter
D. Static Switch Bypass

E. Microprocessor Controlled Logic and Control Panel

F. Input Circuit Breaker

G. Input / Output EMI / RFI Filters

H. Line-up-and-Match Battery Cabinet (43B-500017ER111)

I. Line-up-and-Match MBS Maintenance Bypass Switch (431A500SXXXX)

J. RemotEye 3 Communications (4300-RMTI-3)

K. Field Startup Services (UPSSTARTUP050)

2.3 System Operation

The UPS shall operate as an on-line, fully automatic system in the following modes:

A. NORMAL - Incoming AC power is boosted using a chopper circuit, and converted into DC power. The DC power is then used to charge the (optional) battery bank while at the same time providing clean, DC power to the inverter circuitry. The inverter converts DC power to regulated AC power which feeds the load.

B. EMERGENCY - Upon failure of commercial AC power, the UPS shall derive power from the optional external battery bank and continue feeding the load with clean, regulated AC power. There is no interruption to the critical load upon failure or restoration of commercial AC power.

C. RECHARGE - Upon restoration of the commercial AC source, the rectifier/chopper powers the inverter while simultaneously recharging the optional external battery bank. The UPS shall have the following recharge process:
 a) a constant level of current is used to recharge the batteries (the process shall utilize a current-limit function to prevent overcharging batteries, thus extending the life of the batteries)
 b) as the batteries reach the normal charge level, a constant-voltage control shall begin which causes the battery recharge current to gradually decrease
 c) Under normal operation, the UPS battery bank “floats” at the 2.25-2.27 volts per cell DC level to stay fully charged and ready for the next discharge.

D. BYPASS MODE - Upon detection of an internal fault or output overload, the UPS shall automatically switch from inverter power to an internal bypass via the static switch. Transfer shall be within 4 milliseconds, causing no interruption to the critical load. “Return from Bypass mode” shall be an automatic function, without interruption to the critical load.
Transfer to Bypass may also be performed as a manual operation via the UPS front panel.

E. POWER CONDITIONING MODE - Should the optional external battery cabinet not be available, the UPS shall function and provide protection against spikes, common/normal mode noise, load steps and frequency shifts (without battery back-up capability).

PART 3 – SYSTEM PARAMETERS

3.1 SYSTEM PARAMETERS

A. UPS Input (Note: Step down transformer from main switchgear to be provided by contractor and separate from the Toshiba UPS).

1) Input Voltage : 208/120VAC
2) Input Voltage Requirement : 3 Phase, 4 Wire + Ground
3) Voltage Variation : +10% to -30% *
4) Rated Frequency : 60 Hz
5) Frequency Range : 60 +/- 5 Hz
6) Power Factor : > 0.99 lagging
7) Input Capacity : 110% of UPS Output Capacity
8) Walk-In Function : From 20% to 100% over 5 seconds
9) Input Current Limit : 115% of nominal capacity
10) Inrush Current : < 800% of rated current under:

 synchronous condition

11) Input Current THD : < 3% Total Harmonic Distortion (THD)
12) Surge Withstandability : Meets ANSI C62.41 (IEEE 587)
13) Input Phase Rotation (Protection/Detection) : Standard front-panel alarm panel shall notify user that unit has been supplied with reversed phase rotation on input to allow for correct installation. The UPS shall be fully protected to prevent damage from this event.

* For continuous operation at -20 to -30%, de-rate the maximum operating temperature to 90 °F (32 °C.)

B. UPS Output

1) Rated Voltage : 208/120VAC
2) Output Voltage Rqmts : 3 Phase, 4 Wire + Ground
3) Output Capacities : 50 kVA (45 kW)
4) Rated Load Power Factor : 0.9 lagging
5) Voltage Regulation : +/- 2% nominal (balanced load)
 : +/- 3% nominal (unbalanced load)
6) Voltage Adjust. Range (interface) : +/- 5% manually (by front panel user)
7) Phase Displacement : +/- 2 deg. (0 – 100% balanced load)
 : +/- 4 deg. (0 – 100% unbalanced load)
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA 4310 F3F500XA 50kVA/45KW

8) Rated Frequency : 60 Hz
9) Frequency Regulation : +/- 0.1% free running
10) Frequency Synch. Range : +/- 0.5/1.0/1.5 Hz (+/- 1.0 Hz Standard) Switch selectable by factory rep.
11) Frequency Slew Rate : 1.0 Hz/second to 3.0 Hz/second
12) Voltage Transients : +/- 5% (100% step load change)
 : +/- 3% (loss or return of input power)
 : +/- 8% (bypass to inverter)
13) Transient Voltage Recovery : 50ms maximum to within 2% of nominal
14) Overload Cap. (on inverter) : 125% for 90 sec., 150% for 30 sec.
15) Overload Cap. (on bypass) : 1000% for 10ms, 125% for 10 min.
16) Crest Factor
 50kVA : 2.8
17) Harmonic Voltage Distortion : 1.5% THD maximum, 1% maximum for any single harmonic (linear load)
18) Inrush Current Protection : Automatic transfer to bypass, then auto- return to inverter (retransfer may be inhibited by jumper.)
19) Output Overcurrent : Hall-Effect Current Transformer and Fusing

C. Battery Charging System
1) DC Rated Voltage:

<table>
<thead>
<tr>
<th>UPS Capacity</th>
<th>50 kVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Voltage</td>
<td>288 VDC</td>
</tr>
<tr>
<td>Alarms Voltage(V low)</td>
<td>252 VDC</td>
</tr>
<tr>
<td>Shutdown Voltage (V min)</td>
<td>216 VDC</td>
</tr>
<tr>
<td>Float Charging Voltage</td>
<td>324 VDC (+/- 2%)</td>
</tr>
</tbody>
</table>

2) Recharging Current (Max) : Adjustable to 16 A DC
3) Ripple Voltage : 0.5% DC maximum
4) DC-AC Efficiency : 91.4%

D. Environmental

1) Efficiency – Double Conversion: (AC/AC)

<table>
<thead>
<tr>
<th>Load</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50kVA</td>
<td>88.8%</td>
<td>90.9%</td>
<td>91.2%</td>
<td>91.1%</td>
</tr>
</tbody>
</table>

2) Efficiency – Battery Backup: (DC/AC)
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY
TOSHIBA 4310 F3F500XA 50kVA/45KW

50kVA : 91.4%

3) Thermal loading: BTU/Hr.

<table>
<thead>
<tr>
<th>Load</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50kVA</td>
<td>4856</td>
<td>7695</td>
<td>11,181</td>
<td>15,019</td>
</tr>
</tbody>
</table>

4) Short Circuit Interrupt : 35kAIC

5) Dimensions (WxDxH) : 22.1 in. x 31.6 in. x 73.7 in. (561mm x 802mm x 1872mm)

6) Weight

50kVA : 867 lb. (393 kg)

7) Audible Noise : ~65 dBA @ 1 meter from front of unit.

8) Operating Temperature: UPS : 32 to 104°F (0 to 40°C)
 Optional Battery Cabinet : 68 to 77°F (20 to 25°C)

Heat Rejection : 15,019 BTU/H

9) Storage Temperature: UPS : -4 to 140°F (-20 to 60°C)

10) Operating Humidity : 5%-95% RH (non-condensing)

11) Altitude : < 6,600-ft. maximum (< 2,000 m)

12) Channel Mount

14) Seismic Provisions : Manufacturer to specify installation
 Geometry requirements

PART 4 – FUNCTIONAL DESCRIPTION

4.1 FUNCTIONAL DESCRIPTION

A. Converter / Charger / DC Chopper

DESCRIPTION - The converter/charger shall consist of a solid-state three phase rectifier,
DC to DC converter (chopper), output filter, and transient suppresser network to regulate
and maintain DC power to the inverter.

1) TRANSIENT SUPPRESSER - The incoming AC utility shall first be connected to a molded case circuit breaker as a means of disconnecting power to the UPS. Power shall flow through a surge absorber to prevent large transients from passing through to the load or damaging the (optional) backup battery bank. Power shall then flow through a line filter to prevent sags or surges from passing to the load.

2) CONVERTER/CHARGER - The converter shall serve to change incoming AC power to DC, which shall be supplied to the DC chopper. From this point, DC power is used to recharge the optional battery bank while simultaneously providing power to the inverter.

 a. Input Frequency Range: 45-65 Hz, continuous, without battery operation
 b. Capacity: Battery recharge shall be to within 90% of nominal from a fully discharged state in 10 times the discharge time.

3) DC CHOPPER - The chopper circuit shall consist of inductors, capacitors, diodes and IGBT's (Insulated Gate Bipolar Transistors). The chopper shall have the function of providing start-up protection (by checking phase rotation of incoming utility power), boosting the DC to the inverter (during low AC input voltage conditions), providing power factor enhancement, and reducing reflected harmonics to incoming utility power.

B. Pulse Width Modulated (PWM) Inverter

DESCRIPTION - The PWM (Pulse Width Modulated) inverter shall incorporate an advanced IGBT design, and output overcurrent protection for clean, regulated output power to the critical load.

1) INVERTER - The inverter network shall consist of a high speed IGBT switching network designed to supply non-linear loads with a clean and steady voltage waveform. The inverter switching speed shall be fast enough to limit audible noise to 60 dBA at 3 feet (measured on ‘A’ scale).

2) OVERCURRENT PROTECTION - The output circuitry shall be equipped with a Hall Effect Current Transformer to detect and protect the inverter from excessively high currents.

C. Static Bypass Switch

1) TRANSFER - The static bypass switch shall consist of thyristor switches in conjunction with an output contactor to permit manual switching from bypass to UPS and UPS to bypass without power interruption. The UPS shall instantaneously transfer to bypass should a component fail during normal operation (provided the UPS and bypass are in synchronization). Auto-retransfer to UPS after an overload
condition shall be completed within one second after the bus has dropped to 100% of nominal.

2) REMOTE RUN/STOP - A set of normally open dry contacts shall be provided to remotely transfer the UPS on-line and off-line. When the UPS is in this mode of operation, the UPS front control panel shall be disabled to provide a secured configuration.

D. Microprocessor Control System

1) DESCRIPTION - The UPS system shall be provided with a microprocessor internal control system to perform start-up, transfers, monitoring, and battery recharging. The microprocessor shall provide important information to the user (via a LED touch screen interface) such as system status, fault messages and input and output parameters.

2) LED INDICATORS - The following LED indicators shall be provided on the UPS front panel:

 a. AC INPUT/Fault (Green/Red Lamp) –GREEN - Normal AC input power and UPS is On-line. RED – A UPS fault has occurred and the unit is in Bypass.
 b. WARNING (Amber Lamp) - Lights when the UPS detects an input power fault.
 c. FAULT (Red Lamp) - Lights when a fault has been detected. See “System Diagnostics” for specific fault.

3) SYSTEM METERING - The UPS shall be provided with touch screen display which displays, upon request, the following minimum information:

 For AC Input, AC Output, and Bypass
 Voltage (Line to Line, Line to Neutral)
 Phase Current
 Phase Frequency
 Phase Power Factor
 Power (W and VA) per Phase
 Power (W and VA) Total
 Battery
 Voltage
 Discharge current
 Rated Voltage

4) SYSTEM DIAGNOSTICS - The UPS shall provide diagnostic information to facilitate troubleshooting the UPS should a fault occur.

PART 5 – MECHANICAL DESIGN
5.0 MECHANICAL DESIGN

A. UPS Enclosure

The UPS shall be in a freestanding, NEMA1 enclosure. The overall dimensions and weights shall be as follows (with internal batteries):

<table>
<thead>
<tr>
<th>UPS Size</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kVA</td>
<td>22.1”W x 31.6”D x 73.7”H</td>
<td>867 lbs.</td>
</tr>
</tbody>
</table>

B. Cable Entry

The UPS shall be provided with cable entry at the top, bottom, left and right sides of the UPS enclosure.

C. Ventilation and Maintenance Requirements

The UPS shall require the following minimum space for ventilation and maintenance:

- Front: 36”
- Top: 24”
- Rear, Left Side, Right Side: 0”

PART 6 – STANDARD FEATURES

6.1 STANDARD FEATURES

A. Emergency Power Off (EPO)

Covered EPO Switch mounted on the UPS front
Remote EPO terminals allowing user installation of a remote EPO switch.

B. RS232 Communication Interface

Serial data link will enable the UPS to interface with a computer to provide power status and diagnostic information.

C. DB9 Dry Contact interface

The following normally open dry contacts shall be provided through a DB9 male connector located inside the front door:
1) UPS On
2) Bypass Active
3) Input Power Loss
4) Battery Voltage Low

D. Battery Test Function

The UPS shall be provided with a “Battery Test” function to allow periodically checking the condition of the optional backup batteries. Upon detection of a battery problem, the UPS shall notify the user of this condition allowing the user to perform a
detailed check of the battery string.

PART 7 – LINE-UP AND MATCH ANCILLARY CABINETS

7.1 Line-up and Match Ancillary Cabinets: Chosen

A. Maintenance Bypass Cabinet

The UPS shall be equipped with a may have an optional 3-breaker line-up and matching maintenance bypass cabinet

B. NOT USED

C. Battery Cabinet (43B-500017ER111)

The UPS will have an optional line-up and matching battery cabinet. The cabinet shall be available with one group of 3 battery strings and one circuit breaker.
Each battery string shall consist of four (4) 72V hot-swappable battery packs.

1) Battery Type: Sealed, Valve Regulated Lead Acid Cells (VLRA).
2) Protection Time:
 Each optional standard matching battery cabinet shall provide the following estimated backup run-time:

<table>
<thead>
<tr>
<th>UPS Model</th>
<th>Power Factor</th>
<th>Output Load</th>
<th>Estimated Run-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>50kVA</td>
<td>0.9 PF</td>
<td>100% Rated</td>
<td>15 min.</td>
</tr>
</tbody>
</table>

D. Optional Communications: Chosen

1) RemotEye III & Ethernet/SNMP

PART 8 – SERVICE AND WARRANTY

8.1 SERVICE AND WARRANTY

A. Reliability
System mission reliability 240,000** hours and including bypass MTBF (Mean-Time-Between-Failure) shall be in excess of 3,000,000** hours.

B. Maintainability
Calculated and demonstrated MTTR (Mean-Time-To-Repair) shall be 30 minutes including time to diagnose the problem and replace subassembly.

C. Warranty
The UPS system shall be provided with a comprehensive two-year on-site warranty. The warranty shall cover parts, labor, travel and freight for the UPS. The battery system has a full 2 year warranty with 3 year’s prorata total of 5 years warranty. Typical on-site response time shall be 4 hours (24 hours maximum). The warranty period shall expire two years for UPS and two years for the battery system from date of Substantial Completion. Manufacturer and Installer agree to repair or replace components that fail in material or workmanship within the warranty period.

D. UPS Preferred Vendor status has already been determined by the Owner. And, thus in addition to warranty requirements listed herein, additional warranty and service requirements shall also apply.

PART 9 – DOCUMENT TRANSMITTALS AND DATA HANDLING

9.1 ACTION SUBMITTALS

9.1.1 Product Data: For each type of product indicated. Include data on features, components, electrical duration ratings, and performance.

9.1.2 Shop Drawings: For UPS. Include plans, elevations, sections, details, and attachments to other work.
- Detail equipment assemblies and indicate dimensions, weights, components, and location and identification of each field connection. Show operations and termination access, workspace, and clearance requirements; details of control display panels; and battery arrangement.
- Wiring Diagrams: For power, signal, and control wiring. (one-line with all secondary and monitoring circuit equipment details).
- Provide heat resection rate data. (consider a 73°F +/- 3°F enclosure space).
- Provide wet cell storage battery hydrogen evolution into a closed space. State ventilation requirement data. (consider a 73°F +/- 3°F environment).

9.2 INFORMATIONAL SUBMITTALS

9.2.1 Qualification Data: For qualified testing agency provide the test QA results data.

9.2.2 Seismic Qualification Certificates: For UPS equipment, from manufacturer.
- Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY
TOSHIBA 4310 F3F500XA 50kVA/45KW

9.2.3 Manufacturer Certificates: For each product, from manufacturer.

9.2.4 Factory Test Reports: Comply with specified requirements.

9.2.5 Field quality-control reports.

9.2.6 Performance Test Reports: Indicate test results compared with specified performance requirements, and provide justification and resolution of differences if values do not agree.

9.2.7 Warranties: Sample of special warranties.

9.3 CLOSEOUT SUBMITTALS

9.3.1 Operation and Maintenance Data: For UPS units to include in emergency, operation, and systems maintenance manuals.

9.4 MAINTENANCE MATERIAL SUBMITTALS

9.4.1 Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 • Fuses: Three each for each type and rating.
 • Cabinet Ventilation Filters: Two complete set(s).

9.5 QUALITY ASSURANCE

9.5.1 Power Quality Specialist Qualifications: A registered professional electrical engineer or engineering technician, currently certified by the National Institute for Certification in Engineering Technologies, NICET Level 4, minimum, experienced in performance testing UPS installations and in performing power quality surveys similar to that required in "Performance Testing" Article.

9.5.2 Testing Agency Qualifications: Member company of NETA or an NRTL.
 • Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

9.5.3 Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

9.5.4 UL Compliance: Listed and labeled under UL 1778 by an NRTL.

9.5.5 NFPA Compliance: Mark UPS components as suitable for installation in computer rooms according to NFPA 75.
PART 10– QUALITY PROGRAM INSTALLATION AND TESTING RESULTS REQUIREMENTS

10.1 BATTERY QUALITY CONTROL

10.1.1 Factory test complete UPS system before shipment. Use actual batteries that are part of final installation battery testing. Include the following:
- Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
- Full-load test.
- Transient-load response test.
- Overload test.
- Power failure test.

10.1.2 Observation of Test: Give 14 days' advance notice of tests and provide opportunity for Owner's representative to observe tests at Owner's choice. WSU site test demonstrations shall be conducted during the Monday through Friday normal work week between 0830-1700 hours. WSU will observe testing. The seller shall submit the QA program test plan for WSU acceptance.

10.1.3 Report test results. Include the following data:
- Description of input source and output loads used. Describe actions required to simulate source load variation and various operating conditions and malfunctions.
- List of indications, parameter values, and system responses considered satisfactory for each test action. Include tabulation of actual observations during test.
- List of instruments and equipment used in factory tests.

10.2 FIELD QUALITY CONTROL

10.2.1 Testing Agency: Engage a qualified testing agency to perform tests and inspections.

10.2.2 Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

10.2.3 Perform tests and inspections.
- Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
10.2.4 Tests and Inspections:
- Comply with manufacturer's written instructions.
- Inspect interiors of enclosures, including the following:
 - Integrity of mechanical and electrical connections.
 - Component type and labeling verification.
 - Ratings of installed components.
- Inspect batteries and chargers according to requirements in NETA Acceptance Testing Specifications.
- Test manual and automatic operational features and system protective and alarm functions.
- Test communication of status and alarms to remote monitoring equipment.
- Load the system using a variable-load bank to simulate kilovolt amperes, kilowatts, and power factor of loads for the UPS unit's rating. Use instruments calibrated within the previous six months according to NIST standards.
 - Simulate malfunctions to verify protective device operation.
 - Test duration of supply on emergency, low-battery voltage shutdown, and transfers and restoration due to normal source failure.
 - Test harmonic content of input and output current less than 25, 50, and 100 percent of rated loads.
 - Test output voltage under specified transient-load conditions.
 - Test efficiency at 50, 75, and 100 percent of rated loads.
 - Test remote status and alarm panel functions.
 - Test battery-monitoring system functions.

10.2.5 Seismic-restraint tests and inspections shall include the following:
- Inspect type, size, quantity, arrangement, and proper installation of mounting or anchorage devices.
- Test mounting and anchorage devices according to requirements in Section 260548.16 "Seismic Controls for Electrical Systems."

10.2.6 The UPS system will be considered defective if it does not pass tests and inspections.

10.2.7 Record of Tests and Inspections: Maintain and submit documentation of tests and inspections, including references to manufacturers' written instructions and other test and inspection criteria. Include results of tests, inspections, and retests.
10.3 PERFORMANCE TESTING

10.3.1 Engage the services of a qualified power quality specialist to perform tests and activities indicated for each UPS system.

10.3.2 Monitoring and Testing Schedule: Perform monitoring and testing in a single 10-day period scheduled for the: 50 KVA/45 KW Biological Science Building,
- Schedule monitoring and testing activity with Owner, through Architect, with at least 14 days’ advance notice.
- Schedule monitoring and testing after Substantial Completion, when the UPS is supplying power to its intended load.

10.3.3 Monitoring and Testing Instruments: Three-phase, recording, power monitors. Instruments shall provide continuous simultaneous monitoring of electrical parameters at UPS input terminals and at input terminals of loads served by the UPS. Instruments shall monitor, measure, and graph voltage current and frequency simultaneously and provide full-graphic recordings of the values of those parameters before and during power-line disturbances that cause the values to deviate from normal beyond the adjustable threshold values. Instruments shall be capable of recording either on paper or on magnetic media and have a minimum accuracy of plus or minus 2 percent for electrical parameters. Parameters to be monitored include the following:
- Current: Each phase and neutral and grounding conductors.
- Voltage: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
- Frequency transients.
- Voltage swells and sags.
- Voltage Impulses: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
- High-frequency noise.
- Radio-frequency interference.
- THD of the above currents and voltages.
- Harmonic content of currents and voltages above.

10.3.4 Monitoring and Testing Procedures[for Each Test Period]:
- Exploratory Period: For the first [two] <Insert number> days[of the first scheduled monitoring and testing period], make recordings at various circuit locations and with various parameter-threshold and sampling-interval settings. Make these measurements with the objective of identifying optimum UPS, power system, load, and instrumentation setup conditions for subsequent test and monitoring operations.
- Remainder of Test Period: Perform continuous monitoring of at least two
circuit locations selected on the basis of data obtained during exploratory period.

- Set thresholds and sampling intervals for recording data at values selected to optimize data on performance of the UPS for values indicated, and to highlight the need to adjust, repair, or modify the UPS, distribution system, or load component that may influence its performance or that may require better power quality.

- Perform load and UPS power source switching and operate the UPS on generator power during portions of test period according to directions of Owner's power quality specialist.

- Operate the UPS and its loads in each mode of operation permitted by UPS controls and by the power distribution system design.

- Using loads and devices available as part of the facility's installed systems and equipment[and a temporarily connected portable generator set], create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.

- Using temporarily connected resistive/inductive load banks[and a temporarily connected portable generator set], create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.

- Make adjustments and repairs to UPS, distribution, and load equipment to correct deficiencies disclosed by monitoring and testing and repeat appropriate monitoring and testing to verify success of corrective action.

10.3.5 Coordination with Specified UPS Monitoring Functions: Obtain printouts of built-in monitoring functions specified for the UPS and its components in this Section that are simultaneously recorded with portable instruments in this article.

- Provide the temporary use of an appropriate PC and printer equipped with required connections and software for recording and printing if such units are not available on-site.

- Coordinate printouts with recordings for monitoring performed according to this article, and resolve and report any anomalies in and discrepancies between the two sets of records.
10.3.6 Monitoring and Testing Assistance by Contractor:
- Open UPS and electrical distribution and load equipment and wiring enclosures to make monitoring and testing points accessible for temporary monitoring probe and sensor placement and removal as requested.
- Observe monitoring and testing operations; ensure that UPS and distribution and load equipment warranties are not compromised.
- Perform switching and control of various UPS units, electrical distribution systems, and load components as directed by power quality specialist. Specialist shall design this portion of monitoring and testing operations to expose the UPS to various operating environments, conditions, and events while response is observed, electrical parameters are monitored, and system and equipment deficiencies are identified.
- Make repairs and adjustments to the UPS and to electrical distribution system and load components, and retest and repeat monitoring as needed to verify validity of results and correction of deficiencies.
- Engage the services of the UPS manufacturer’s factory-authorized service representative periodically during performance testing operations for repairs, adjustments, and consultations.

10.3.7 Documentation: Record test point and sensor locations, instrument settings, and circuit and load conditions for each monitoring summary and power disturbance recording. Coordinate simultaneous recordings made on UPS input and load circuits.

10.3.8 Analysis of Recorded Data and Report: Review and analyze test observations and recorded data and submit a detailed written report. Include the following in [each] report:
- Description of corrective actions performed during monitoring and survey work and their results.
- Recommendations for further action to provide optimum performance by the UPS and appropriate power quality for non-UPS loads. Include a statement of priority ranking and a cost estimate for each recommendation that involves system or equipment revisions.
- Copies of monitoring summary graphics and graphics illustrating harmonic content of significant voltages and currents.
- Copies of graphics of power disturbance recordings that illustrate findings, conclusions, and recommendations.
- Recommendations for operating, adjusting, or revising UPS controls.
- Recommendation for alterations to the UPS installation.
- Recommendations for adjusting or revising generator-set or automatic transfer switch installations or their controls.
- Recommendations for power distribution system revisions.
- Recommendations for adjusting or revising electrical loads, their connections, or controls.
10.3.9 Interim and Final Reports: Provide an interim report at the end of each test period and a final comprehensive report at the end of final test and analysis period.

10.4 DEMONSTRATION

16.4.1 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the UPS.

TOSHIBA Static Uninterruptible Power Supply Data Sheet

I. State model number data: each cabinet, (include dimensions and weight data)

a. UPS 50 kVA 45 kW power Electronics cabinet: 4310F3F500XA

b. Battery Storage Cabinet: 431A500XXXX

c. Maintenance Bypass Switch Cabinet: 431M500-F3MS

d. Remote Communication Module Features: 4300-RMTI-3

e. Startup Service UPS System: UPSSTARTUP050

II.

<table>
<thead>
<tr>
<th>Input Power Parameter Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage/Wiring Features</td>
</tr>
<tr>
<td>Voltage Range/Variation</td>
</tr>
<tr>
<td>Power Factor</td>
</tr>
<tr>
<td>Current THD Harmonics</td>
</tr>
<tr>
<td>Frequency/Variation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Power Parameter Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage/Wiring Features</td>
</tr>
<tr>
<td>Frequency/Variation</td>
</tr>
<tr>
<td>Voltage Regulation</td>
</tr>
<tr>
<td>Power Factor: LAG</td>
</tr>
<tr>
<td>Voltage THD</td>
</tr>
</tbody>
</table>
III. State environment operating parameter requirements:
 • Temperature
 • Humidity
 • Noise dBA
 • Heat rejection
 • Efficiency ratings data
 • Seismic

Static Uninterruptible Power Supply Data Sheet

IV. System Topology: State UPS Description Data: ___________________

V. State UPS battery features and operation life features.

VI. State UPS monitoring, alarm, control interface switch features and signal handling provision.

VII. State UPS international and national standards compliance adherence data (e.g: UL ISO ANSI IEEE, other NFPA-NEC)

VIII. State UPS warranty duration and features.

IX. State UPS Startup services; post-installation

END OF SECTION 263353
Project Specifications

Prepared for:

Wayne State University

For Bids
1/21/2015

Prepared by
Chemistry Building

Building No. 007
5101 Cass Ave.
Detroit, MI 48201

Drawing List

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Sheet Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>E-1</td>
<td>First Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-3</td>
<td>Third Floor Plan</td>
</tr>
<tr>
<td>E-4</td>
<td>Fourth Floor Plan</td>
</tr>
<tr>
<td>E-PH</td>
<td>Penthouse Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Dist. Riser Diagram</td>
</tr>
<tr>
<td>E-103</td>
<td>Existing Power Panels</td>
</tr>
<tr>
<td>E-103.1</td>
<td>Existing Power Panels</td>
</tr>
<tr>
<td>E-104</td>
<td>Existing RP/LP Panels</td>
</tr>
</tbody>
</table>

Specifications

Table of Contents

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>012100</td>
<td>Allowances</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
</tr>
<tr>
<td>031000</td>
<td>Concrete Formwork</td>
</tr>
</tbody>
</table>

Division 1 – General Requirements

Division 3 – Concrete
<table>
<thead>
<tr>
<th>Section No.</th>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>033000</td>
<td>Cast-In-Place Concrete</td>
</tr>
<tr>
<td></td>
<td>Division 5 – Metals</td>
</tr>
<tr>
<td>050940</td>
<td>Post Installed Anchors</td>
</tr>
<tr>
<td>055000</td>
<td>Metal Fabrications</td>
</tr>
<tr>
<td></td>
<td>Division 7 – Thermal and Moisture Protection</td>
</tr>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
</tr>
<tr>
<td></td>
<td>Division 8 – Openings</td>
</tr>
<tr>
<td>081100</td>
<td>Prefinished Steel Door Frames</td>
</tr>
<tr>
<td>087100</td>
<td>Door Hardware</td>
</tr>
<tr>
<td></td>
<td>Division 9 – Finishes</td>
</tr>
<tr>
<td>099100</td>
<td>Painting</td>
</tr>
<tr>
<td></td>
<td>Division 26 – Electrical</td>
</tr>
<tr>
<td>260510</td>
<td>Electrical Design and Equipment</td>
</tr>
<tr>
<td>260519</td>
<td>Low-Voltage Electrical Power Conductors and Cables</td>
</tr>
<tr>
<td>260526</td>
<td>Grounding and Bonding for Electrical Systems</td>
</tr>
<tr>
<td>260529</td>
<td>Hangers and Supports for Electrical Systems</td>
</tr>
<tr>
<td>260533</td>
<td>Raceways and Boxes for Electrical</td>
</tr>
</tbody>
</table>
Wayne State University
Chemistry Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>260544</td>
<td>Sleeves and Sleeve Seals for Electrical Raceways and Cabling</td>
</tr>
<tr>
<td>260553</td>
<td>Identification for Electrical Systems</td>
</tr>
<tr>
<td>262200</td>
<td>Low-Voltage Transformers</td>
</tr>
<tr>
<td>262416</td>
<td>Panelboards</td>
</tr>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
</tr>
<tr>
<td>263353</td>
<td>Static Uninterruptible Power Supply</td>
</tr>
</tbody>
</table>
SECTION 012100 - ALLOWANCES

PART 1 - GENERAL

1.1 SUMMARY

A. Selected labor are shown and specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual labor to a later date.

1. Cash Allowances: Base bid shall include an allowance to cover costs associated with premium time associated with overtime work in amount of $5,000.00. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

B. Type of allowance is "Lump-sum" cash allowance.

1.4 SUBMITTALS

A. Submit in writing to the WSU Rep in advance allocation of expected monies required to perform pre-approved work.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 – EXECUTION (NOT APPLICABLE)

3.1 SCHEDULE OF CASH ALLOWANCES

END OF SECTION 012100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 1. Operation and maintenance documentation directory.
 2. Emergency manuals.
 3. Operation manuals for systems, subsystems, and equipment.
 4. Product maintenance manuals.
 5. Systems and equipment maintenance manuals.

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.

1. WSU representative will comment on whether content of operations and maintenance submittals are acceptable.
2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

B. Format: Submit operations and maintenance manuals in the following format:

 a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
b. Enable inserted reviewer comments on draft submittals.

2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Architect, through Construction Manager, will return two copies.

C. Initial Manual Submittal: Submit draft copy of each manual at least 30 days before commencing demonstration and training. Architect and Commissioning Authority will comment on whether general scope and content of manual are acceptable.

D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect and Commissioning Authority will return copy with comments.

1. Correct or revise each manual to comply with Architect's and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's and Commissioning Authority's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents.
2.2 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name and contact information for Contractor.
6. Name and contact information for Construction Manager.
7. Name and contact information for Architect.
8. Name and contact information for Commissioning Authority.
9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
10. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.

1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.

1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.

5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:

1. Type of emergency.
2. Emergency instructions.
3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:

1. Fire.
2. Flood.
5. Power failure.
7. System, subsystem, or equipment failure.
8. Chemical release or spill.

C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:

1. Instructions on stopping.
2. Shutdown instructions for each type of emergency.
3. Operating instructions for conditions outside normal operating limits.
4. Required sequences for electric or electronic systems.
5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

2. Performance and design criteria if Contractor has delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
OPERATION AND MAINTENANCE DATA

4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Product Information: Include the following, as applicable:
 1. Product name and model number.
 2. Manufacturer's name.
 3. Color, pattern, and texture.
 5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.
2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:

1. Standard maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 1. Do not use original project record documents as part of operation and maintenance manuals.
 2. Comply with requirements of newly prepared record Drawings in Section 017839 "Project Record Documents."

END OF SECTION 017823
CONCRETE FORMWORK

SECTION 031000 – CONCRETE FORMWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the design, installation and removal of forms for cast-in-place concrete.

B. Related Sections include the following:
 1. Division 3 Section “Cast-In-Place Concrete.”

C. Division of Work:
 1. In accordance with the General Conditions, Contractor is responsible for dividing the Work among the Subcontractors and Suppliers and for delineating the work to be performed by specific trades. The following are suggestions as to how the Work may be divided. This is not a complete list of all the work:
 a. Mechanical, Electrical and Plumbing Trades: Supply, locate and install premanufactured items including inserts, sleeves, and other embedded items required by those respective trades.
 b. Contractor: Coordinate location of mechanical, electrical and plumbing inserts, embedded parts, openings and recesses with respective trades.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following:
 1. ACI - American Concrete Institute:
 b. 301 - Standard Specifications for Structural Concrete for Buildings.
 c. 347R - Guide to Formwork for Concrete.

1.4 DESIGN AND PERFORMANCE REQUIREMENTS

A. Form Construction:
 1. Provide required forms, shores, bracing, breast timbers, form ties, and accessories in sufficient quantities so as not to delay the Work, and of strength to support vertical and horizontal loads to which they are subjected.
 2. Deflection: Maximum deflection of forms shall be 1/240 of span or 1/4-inch, whichever is less.

1.5 SUBMITTALS

A. Manufacturer's Literature: For form release agent.
1.6 QUALITY ASSURANCE

A. Design: The design and engineering of formwork, as well as its construction, shall be the responsibility of Contractor.

B. Notifications: Notify special inspector at least 24 hours in advance of placing concrete.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Formwork Facing Materials:
 1. Smooth Form Finish Areas:
 a. Locations: All locations unless otherwise noted.
 b. The form facing material shall produce a smooth, hard, uniform surface on the concrete.
 c. Form facing materials may be plywood, tempered concrete-form-grade hardboard, metal, plastic, paper; or other approved material capable of producing the desired finish.
 d. Facing materials shall be supported by studs or other backing capable of preventing deflections in excess of those specified herein.
 e. Material with damaged surfaces, worn edges, patches, dents or other defects which will impair the texture of the concrete surface shall not be used.

B. Chamfer Strips:
 1. Wood, metal, rubber, or PVC.
 2. Sizes as indicated, 3/4-inch x 3/4-inch minimum.

C. Form Release Agent:
 1. Products for General Use: Magic Kote by Symons, Crete-lease 727 by Cresset Company; or equal.
 2. Chemically neutral agent in hydrocarbon solvent that will effectively prevent absorption of moisture and prevent bond with the concrete.

PART 3 - EXECUTION

3.1 FORMWORK CONSTRUCTION

A. General:
 1. Align and secure joints to avoid offsets.
 2. Provide chamfered strips in exposed corners of exterior corners, internal corners and for similar conditions throughout the Work.
 3. The arrangement of facing material shall be orderly and symmetrical with the number of seams kept to the practical minimum.
 4. Retighten forms after concrete placement if required to eliminate mortar leaks.
 a. Securely brace temporary openings and set tightly to forms to prevent loss of concrete mortar.
 b. Locate temporary openings on forms at inconspicuous locations.
B. Openings and Embedded Items:
1. Set and build into the work anchorage devices and other embedded items required for work that is attached to, or supported by, cast-in-place concrete.
2. Coordinate work of other Sections and cooperate with trade involved in forming and setting openings, slots, recesses, chases, sleeves, bolts, anchor and other inserts.
3. Use setting drawings, diagrams, instructions and directions provided by Suppliers of the respective items.
4. Do not perform work unless specifically indicated on Drawings or reviewed prior to installation.

C. Cleaning:
1. Clean forms as erection proceeds, to remove foreign matter.
2. Remove cuttings, shavings and debris from within forms.
3. Flush with water or use compressed air to remove remaining foreign matter.
4. Ensure that water and debris drain to exterior through clean-out ports.
5. When forms are extended for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close joints.
6. Thoroughly clean embedded waterstops and concrete surfaces prior to constructing forms for the next pour.

D. Applying Form Release Agent:
1. Temperature of release agent and surfaces to which it is applied shall be a minimum of 70 degrees F.
2. Apply by spray only.
3. Uniformly coat surfaces with a thin film.
4. Wipe off excess with clean towels.
5. Apply in accordance with Manufacturer's recommendations.
6. Do not allow to stand in puddles in the forms and prevent bonding of concrete at construction joints.

E. Provisions for Form Removal:
1. Fabricate forms for easy removal without hammering or prying against the concrete surfaces.
2. Kerf wood inserts for forming keyways, reglets, recesses and the like to prevent swelling and for easy removal.

3.2 FORM AND SUPPORT REMOVAL

A. Forms and supports shall remain in place for not less than the following periods of time:
1. Housekeeping Pad: 12 to 24 hours.

B. In any event, do not remove forms and supports until concrete in walls has reached 30% of design strength, and in structural members and slabs has reached 75% of design strength.

C. Special precautions shall be taken when concrete is placed in average temperatures of 50 degrees F or below to ensure that forms are not removed before design strengths specified above are met.

D. Remove forms in such a manner and at such times as required to ensure safety of persons involved and so as to protect and maintain structural integrity of members.
E. Particular care shall be taken in removing forms to minimize damage to concrete surfaces; use crush or wrecking plates as necessary.

F. Whenever the formwork is removed, cure the exposed concrete as specified under Division 3 Section “Cast-in-Place Concrete.”

3.3 FIELD QUALITY CONTROL

A. Inspect and check completed formwork, shoring and bracing to ensure that work is in accordance with formwork design, and that supports, fastenings, wedges, ties and parts are secure.

B. Form Surface Repairs:
1. Repair surfaces of forms to be reused in the work.
2. Split, frayed, delaminated or otherwise damaged form facing material will not be acceptable.
3. Apply new form release agent to new concrete contact form surfaces.
4. Do not use patched forms for exposed concrete surfaces.

END OF SECTION 031000
033000

CAST IN PLACE CONCRETE

SECTION 033000 – CAST IN PLACE CONCRETE

PART 1 – GENERAL

1.1 SUMMARY

A. Work Included: Cast in place concrete.
 1. Housekeeping pads.

1.2 QUALITY ASSURANCE

REFERENCE STANDARDS

A. Comply with the latest editions of the following design guides and standards:
 1. ACI 301 “Specifications for Structural Concrete for Buildings”
 2. ACI 302 “Guide for Concrete Floor and Slab Construction”
 3. ACI 304 “Recommended Practice for Measuring, Mixing, Transporting, and Placing
 Concrete:”
 4. ACI 315 “Details and Detailing of concrete Reinforcement”
 5. ACI 318 “Building Code Requirements for Structural Concrete”
 6. ACI 347 “Recommended Practice for Concrete Formwork”

1.3 SUBMITTALS

A. Shop Drawings: Submit Shop Drawings for fabrication, bending, and placement of concrete
 reinforcement. Show bar bending schedules, stirrup spacing, diagrams of bent bars, and
 arrangements of concrete reinforcement.

B. Mix Designs: Submit proposed mix designs for concrete at least 15 days before start of
 concreting. Submittal shall include: cement content and type, admixture content and type,
 aggregate source and gradation, water content, air content, slump, yield, and documentation of
 average strength by field experience method or laboratory prepared trial mixtures in accordance
 with ACI 318 Article 4.3.

C. Product Data: Submit data and installation instructions for proprietary materials.

D. Material Certificates: Submit materials certificates certifying that each material complies with
 Specifications.

1.4 TESTING SERVICES

A. Owner will engage a testing laboratory acceptable to the Architect-Engineer to perform material
 evaluation tests and for quality control during placement.
B. Sample and test concrete for quality control during placement as follows:
 1. Compressive Strength Test: ASTM C39, one set of six cylinders for each 50 cubic yards or fraction thereof, of each concrete class placed in any one day, two lab specimens tested at 7 days, two lab specimens tested at 28 days and two specimens retained in reserve for later testing if required.

C. Test Reports
 1. Forward results to Architect-Engineer and Contractor on same day that tests are made.
 2. Reports of compressive strength tests shall contain the general information of project identification name and number, date of concrete placement, name of Contractor, name of concrete supplier, truck number and delivery ticket number, name of concrete testing agency, concrete type and class, name of individual making specimen, location of concrete batch in structure, design compressive strength at 28 days, concrete mix proportions and materials; and the specific information of compressive strength and type of break for both 7-day and 28-day tests.
 3. Field reports of concrete inspection shall contain general information noted above, plus cylinder numbers.

D. Additional Testing
 1. Testing agency shall make additional test of in-place concrete when test results indicate specified concrete strengths and other characteristics have not been attained in the structure.
 2. Testing agency shall conduct tests to determine adequacy of concrete cored cylinders complying with ASTM C42 or by other methods acceptable to Architect-Engineer.
 3. Contractor shall pay for such tests conducted, and any other additional testing required, if concrete testing confirms specified strengths have not been met.

1.5 JOB CONDITIONS

 A. Store materials so as to ensure preservation of their quality and fitness for the Work. Store reinforcement and formwork in a manner to prevent damage and accumulation of dirt.

 B. Contractor shall be responsible for correction of concrete work which does not conform to specified requirements, including strength, tolerances and finishes. Correct deficient concrete as directed by Architect-Engineer.

PART 2 – PRODUCTS

2.1 MATERIALS

 A. Formwork
CAST IN PLACE CONCRETE

1. Exposed Concrete: Unless otherwise shown or specified, construct formwork for concrete surfaces, which will be exposed to view in the completed project, with form plywood, metal or other acceptable panel-type material, to provide continuous, straight, smooth exposed surfaces. Furnish in largest practicable sizes to minimize number of joints and to conform to joint system show on Drawings. Provide form material with sufficient thickness to withstand pressure of newly-placed concrete without bow or deflection.

B. Form Coatings: Commercial formulation form-coating compounds shall not bond with, stain, nor adversely affect concrete surfaces, and shall not impair subsequent treatments of concrete surfaces requiring bond or adhesion, nor impede wetting of surfaces to be cured with water or curing compound.

C. Reinforcement
 1. Deformed bars: ASTM A615, Grade 60.
 3. All chairs, spacers, clips, wire anchors and related items necessary to accurately space and secure reinforcement.
 4. Additional bars, if required, to anchor or space reinforcement.
 5. Chairs shall be plastic booted at points of bearing on forms for exposed concrete.
 6. Minimum 16-gauge annealed tie wire, ASTM A82.

D. Cement: ASTM C150, Type I or Type II.

E. Aggregates: ASTM C33 and as herein specified.
 1. Fine Aggregate: Clean, sharp, natural sand free from loam, clay, lumps or other deleterious substances with less that 10% passing the #100 sieve and less than 3% passing the #200 sieve.
 2. Coarse Aggregate: Clean, uncoated, processed aggregate containing no clay, mud, loam or foreign matter, as follows:
 a. Crushed stone: Processed from natural rock or stone for concrete slabs meeting MDOT 6AA, with a ¾ inch maximum aggregate size.
 b. Clean, sharp, natural or processed gravel, or, crushed stone, free from loam, clay, lumps, or other deleterious substances for footings and miscellaneous concrete.
 c. Maximum aggregate Size: Pads – ¾”.

F. Water: Clean, fresh, and potable.

G. Water Reducing Admixture: ASTM C494, Type A.

H. Non Corrosive, Non Chloride Accelerator: ASTM C494, Type C or E.

I. Prohibited Admixtures: Calcium chloride, thiocyanates. Admixtures containing more than 0.05% chloride ions are not permitted.
J. Evaporation Retarder: Confilm by Master Builders, or accepted equal.

K. Curing Sheet Materials: ASTM C171, including waterproof paper, polyethylene film or polyethylene coated burlap.

L. Liquid Membrane Curing/Sealing Compound: Masterkure by Master Builders or accepted equal.

2.2 PROPORTIONING AND MIX DESIGN

A. Prepare design mixes for concrete. Use independent testing facility acceptable to Architect-Engineer for preparing and reporting proposed mix designs.

B. Where the concrete production facility can establish the uniformity of its production for concrete of similar strength and materials based on recent test data, the average strength used as a basis for determining mix design proportions shall exceed the specified design strength by the requirements of ACI 318, section 4.3.2 or ACI 301, Section 3.9.

C. Concrete Quality

<table>
<thead>
<tr>
<th>Location</th>
<th>Required 28 day Compressive Strength</th>
<th>Maximum Water/Cement Ratio</th>
<th>Air-Content</th>
<th>Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housekeeping Pad</td>
<td>3,000 psi</td>
<td>0.55</td>
<td>-</td>
<td>147 – 153 pcf</td>
</tr>
</tbody>
</table>

D. Slump

1. Housekeeping Pad: 3” to 5”.

E. Ready Mix Concrete: ASTM C94.

F. The quantity of coarse aggregate in pounds must be in the range of 1.25 to 1.5 times the quantity of fine aggregate in pounds.

G. Pumping of concrete is permitted only if mix designs specifically prepared and used previously for pumping are submitted. Pumpline shall have a 5-inch minimum inside diameter and shall be used with 5-inch pumps.
1.3 REINFORCING FABRICATION

A. Fabricate bars to required lengths, shapes and bends. Do not rebend or straighten reinforcement in a manner that shall weaken the material.

1.4 FORMWORK

A. Design formwork to support vertical and lateral loads that might be applied until such loads can be supported by concrete structure.

PART 3 – EXECUTION

3.1 INSPECTION

A. Examine conditions under which concrete shall be placed. Do not proceed with work until all unsatisfactory conditions are corrected.

3.2 NOTIFICATION

A. Notify Architect-Engineer 24 hours before anticipated time of completion of reinforcement in any section.

B. Do not place concrete until reinforcement has been observed and corrections, if any, made.

3.3 FORMWORK INSTALLATION

A. Erect, brace, and maintain formwork to support vertical and lateral loads.

B. Construct forms to sizes, lines and dimensions shown to obtain accurate alignment, location, grades, level and plumb work in finished structure.

C. Provide for openings, offsets, keys and other features required in work. Accurately position and support items.

D. Solidly butt joints and provide backup at joints to prevent leakage of cement paste.

E. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces.

F. Kerf wood inserts for forming keys and the like to prevent swelling and for easy removal.

G. Provide openings in concrete form to accommodate work of other trades. Determine size and location of openings, recesses and chases from trades providing such.
H. Cleaning and Tightening: Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt or other debris just before concrete is placed. Retighten forms after concrete placement if required to eliminate concrete leaks.

I. Reuse of Forms: Clean and repair surfaces of forms to be reused in the work. Split, frayed, delaminated, or otherwise damaged form facing material is not acceptable. Apply new form coating compound material. When forms are reused for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close all joints. Align and secure joints to avoid offsets.

3.4 REINFORCEMENT PLACING

A. Clean reinforcement of loose rust, mill scale, earth, ice and other materials which reduce or destroy bond with concrete.

B. Accurately position, support and secure reinforcement against displacement by formwork, construction or concrete placement operations. Locate and support reinforcement by metal chairs, runners, bolsters, spacers and hangers as required. Do not use brick.

C. Place reinforcement to obtain at least the minimum coverage’s for concrete protection.

D. Arrange, space and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.

E. Lap bar splices as indicated. Stagger splices in adjacent bars. Wire tie all splices.

3.5 WELDED WIRE FABRIC REINFORCEMENT PLACEMENT

A. Place welded wire fabric one-third of the slab thickness below top surface of slab.

B. Place flat sheets in as long lengths as practical. Lap adjoining sheets at least one full mesh. Offset laps to prevent continuous laps in either direction.

C. Do not continue welded wire fabric through any control joints or construction joints for slabs on grade.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, reinforcing steel and items to be embedded or cast in the concrete.
B. Notify other trades to permit installation of their work. Cooperate with other trades in setting such work as required.

C. Install anchor bolts and sleeves.

D. Deposit concrete continuously or in layers of such thickness that no concrete shall be placed on concrete which has hardened sufficiently to cause formation of seams or planes of weakness within section. Provide construction joints if section cannot be placed continuously.

E. Deposit concrete as nearly as practicable to its final location to avoid segregation caused by rehandling or flowing.

F. Maximum drop of concrete shall not exceed 5 feet. Use hopper and trunk for greater drops.

G. Contractor shall be responsible for controlling the proper placing of all embedded pipe, conduit and other embedded items.

H. Contractor shall be responsible for finishing of all concrete slabs to proper elevations to insure that all surface moisture will drain freely to floor drain, and that no puddle areas exist. During finishing operation, Contractor shall pay particular attention to this criterion, and shall make all efforts to obtain this. Any cost of corrections to provide for this positive drainage will be the responsibility of Contractor.

3.7 CONSOLIDATION

A. Consolidate placed concrete by mechanical vibrating equipment supplemented by hand spading, rodding or tamping.

B. Do not use vibrators to transport concrete inside formwork.

C. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing segregation of mix.

D. Do not allow vibrator to come in contact with form.

3.8 SURFACE FINISHES

A. Finish of Formed Surfaces:
 1. Smooth Form Finish: For formed concrete surfaces exposed to view. This is as cast concrete surface obtained with selected form facing material, arranged orderly and symmetrically with a minimum of seams. Repair and patch defective areas with fins or other projections completely removed and smoothed. Lightly rub all exposed surfaces to
achieve a uniform appearance. Or Lightly sandblast to expose fine aggregate with occasional exposure of coarse aggregate and to make the color uniform.

1.9 CURING AND PROTECTION

A. Concrete shall be protected from premature drying, excessively hot or cold temperature, and mechanical injury according to provisions of ACI 301, Chapter 12. During placing, all concrete flatwork exposed to or subject to rapid evaporation of moisture under drying conditions (including hot weather, low humidity, wind and/or sunlight) shall be protected immediately following screeding with evaporation retarder applied in accordance with recommendations of manufacturer. Application shall precede and shall be in addition to curing specified below.

B. Concrete shall be maintained in a continuously moist condition for at least 7 days after placement. Curing shall begin as soon as possible after concrete has been placed and finished. Materials and methods of curing shall be submitted to Architect-Engineer for review and approval.

C. Curing and Protection: Surfaces not in contact with forms and surfaces in contact with forms for less than seven days.
 1. Curing shall be by water curings, application of liquid membrane curing/sealing compound or by application of sheet curing materials. Curing compounds shall be applied in accordance with manufacturer’s recommendations. Liquid membrane curing compound used on floor slabs receiving applied finish flooring shall be guaranteed by the manufacturer, in writing, not to impair bonding of adhesive.
 2. For slabs use a curing treatment of water curing, curing sheet materials, or by applying and removing curing/sealing compound. The curing compounds must be applied immediately after final finishing. For curing by water curing or curing sheet materials, the concrete must be continually moist-cured for at least 7 days. Curing shall begin immediately after finishing.

1.17 REPAIR OF SURFACES

A. Contractor shall be responsible for cost of repairing defects.

B. Repair defective pad areas as follows:
 1. Correct flatness and levelness defects by grinding or removal and replacement of slab. Patching of low spots will not be permitted.
 2. For cracks less than 1/32 inch, no repairs are required. For cracks greater than 1/32 inch, use crack repair material. For cracks over 1/8 inch, fill crack with oven-dried sand prior to application of crack repair material, as recommended by manufacturer. Contractor also has option to remove and rebuild areas of cracking. Mask cracks to limit crack repair material to crack only.

END OF SECTION 033000
SECTION 050940 – POST-INSTALLED ANCHORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the furnishing and installation of post-installed anchors.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following pertinent provisions:
 1. ASTM:
 a. A36 - Carbon Structural Steel.
 b. A198 - Steel Bolting Materials for High-Temperature Service.
 d. A307 - Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength.
 e. A510 - General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel.
 g. B633 - Electrodeposited Coatings of Zinc on Iron and Steel.
 h. E488 - Strength of Anchors in Concrete and Masonry Elements.
 i. E1512 - Testing Bond Performance of Bonded Anchors.
 j. F436 - Hardened Steel Washers.
 k. F844 - Washers, Steel, Plain (Flat), Unhardened for General Use.
 2. ACI 318-02, Appendix D - Anchoring to Concrete.

1.4 SUBMITTALS

A. Product Data: For All Members to be Furnished:
 1. Base material being fastened to.
 2. Anchor embedment depth in base material.

1.5 QUALITY ASSURANCE

A. Installation Personnel Qualifications:
 1. Trained and experienced in the type of work being performed.
 2. Knowledgeable of the specific manufacturer’s requirements for quality installation of post-installed anchors.

B. Inspection of Post-Installed Anchor Installation: Field instruction and inspection during the installation process by Manufacturer’s authorized field representative shall take place at the discretion of Engineer. The General Contractor may utilize such instruction and inspection at any
time without the authorization of Engineer. Any costs which may be associated with such services shall be paid for by the General Contractor.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Post-Installed Anchor Material:
 1. Anchors that resist loads through mechanical friction or keying forces:
 a. Expansion Anchors:
 1) Wedge style anchor.
 2) Capable of sustaining an ultimate load of 6 times the imposed load capacity in unit masonry and 4 times the imposed load capacity in concrete when tested in accordance with ASTM E488.
 3) Hilti Kwik Bolt III; Powers Power-Stud; or equal.
 4) Stainless steel in accordance with ASTM F593.
 b. Sleeve Anchors:
 1) Expanding sleeve style anchor.
 2) Hilti LLC or LSL heavy duty sleeve anchors; Powers Lok/Bolt sleeve anchor; or equal.
 3) Hex, acorn, round or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 5) Dry Areas: Mild steel, galvanized in accordance with ASTM B633.
 c. Undercut Anchors:
 1) Expanding sleeve, self-undercutting wedge style anchor.
 2) Hilti HDA Undercut Anchors; Powers Power-Bolt Anchors; or equal.
 3) Hex or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 2. Anchors that resist loads through an injectable chemical adhesive:
 a. In Concrete: Hilti HIT HY-150, HIT-ICE, HIT-T2, HIT RE 500 and HSE 2421; Powers Power-Fast; or equal.
 b. Anchored Material: Deformed reinforcing bars as indicated on the Drawings.
 c. Bonding Strength: Tested in accordance with ASTM E1512.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install Post-Installed Anchors:
 1. In strict accordance with the installation instructions supplied by the Manufacturer.
 2. Under the direction and Site supervision of the Manufacturer’s authorized field representative when directed to do so by the Project Engineer.
 3. In drilled out holes of the proper depth and diameter cleaned of dust and debris according to the Manufacturer’s specific installation instructions.
B. Post installed anchors anchored to substrate with an injectable adhesive shall have no load applied until adhesive has properly cured and developed specified strength where cure time shall be as called out in the Manufacturer’s literature based on prevailing environmental conditions at the time of installation.

END OF SECTION 050940
055000
METAL FABRICATIONS

SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Steel handrail.
 2. Steel framing and supports for mechanical and electrical equipment.
 3. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 4. Shelf angles.
 5. Metal ladders.
 7. Metal floor plate.
 8. Miscellaneous steel trim.
 9. Metal bollards.
 10. Loose bearing and leveling plates for applications where they are not specified in other Sections.

1.3 COORDINATION
A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Metal nosings and treads.
 2. Paint products.
B. Shop Drawings: Show fabrication and installation details. For all assemblies.

1.5 INFORMATIONAL SUBMITTALS

A. Mill Certificates: Signed by stainless-steel manufacturers, certifying that products furnished comply with requirements.

B. Welding certificates.

C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
3. AWS D1.6/D1.6M, "Structural Welding Code - Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 METALS

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

C. Stainless-Steel Sheet, Strip, and Plate: ASTM A 240/A 240M or ASTM A 666.

D. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.

E. Steel Tubing: ASTM A 500/A 500M, cold-formed steel tubing.
METAL FABRICATIONS

F. Steel Pipe: ASTM A 53/A 53M, Standard Weight (Schedule 40) unless otherwise indicated.

G. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M, unless otherwise indicated.

2.2 FASTENERS

A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633, Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 1. Provide stainless-steel fasteners for fastening nickel silver.
 2. Provide bronze fasteners for fastening bronze.

B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A with hex nuts, ASTM A 563 flat washers.

C. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 325, Type 3 with hex nuts, ASTM A 563, Grade C3 flat washers.

D. Stainless-Steel Bolts and Nuts: Regular hexagon-head annealed stainless-steel bolts, ASTM F 593 with hex nuts, ASTM F 594 flat washers.

E. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563 and, where indicated, flat washers.
 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.

F. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.

G. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.

2.3 MISCELLANEOUS MATERIALS

A. Low-Emitting Materials: Paints and coatings shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
METAL FABRICATIONS

1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.

C. Water-Based Primer: Emulsion type, anticorrosive primer for mildly corrosive environments that is resistant to flash rusting when applied to cleaned steel, complying with MPI#107 and compatible with topcoat.

D. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.

E. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.

F. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.

G. Non-shrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.

H. Concrete: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normal-weight, air-entrained, concrete.

2.4 FABRICATION, GENERAL

A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.

B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.

D. Form exposed work with accurate angles and surfaces and straight edges.

E. Weld corners and seams continuously to comply with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing.

F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.
G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.

H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.

I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.

2.5 MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.

B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.

C. Galvanize miscellaneous framing and supports where indicated.

2.6 MISCELLANEOUS STEEL TRIM

A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.

B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.

1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.

C. Galvanize miscellaneous steel trim.

2.7 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.8 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.
2.9 STEEL AND IRON FINISHES

A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.
 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.

B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.

C. Shop prime iron and steel items **not indicated to be galvanized** unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.

B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.

C. Field Welding: Comply with the following requirements:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.

E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.

B. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.

1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.

C. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installing Bearing and Leveling Plates" Article.

1. Grout baseplates of columns supporting steel girders after girders are installed and leveled.

3.3 INSTALLING PREFABRICATED BUILDING COLUMNS

A. Install prefabricated building columns to comply with AISC 360, "Specifications for Structural Steel Buildings," and with requirements applicable to listing and labeling for fire-resistance rating indicated.

3.4 INSTALLING METAL BOLLARDS

A. Fill metal-capped bollards solidly with concrete and allow concrete to cure seven days before installing.

B. Anchor bollards in concrete. Fill annular space around bollard solidly with non-shrink grout; mixed and placed to comply with grout manufacturer's written instructions. Slope grout up approximately 1/8 inch toward bollard.

C. Fill bollards solidly with concrete, mounding top surface to shed water.

3.5 ADJUSTING AND CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780/A 780M.

END OF SECTION 055000
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Penetrations in fire-resistance-rated walls.
2. Penetrations in horizontal assemblies.
3. Penetrations in smoke barriers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For penetration firestopping sealants and sealant primers, documentation including printed statement of VOC content.
2. Laboratory Test Reports for Credit IEQ 4.1: For penetration firestopping sealants and sealant primers, documentation indicating that products comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.

1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Grace Construction Products.
 3. Hilti, Inc.
 5. Johns Manville.
 6. NU CO Inc.
2.2 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:

 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.

 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Global in its "Building Materials Approval Guide."
 4) Owner will engage a qualified testing agency to perform tests and inspections.

2.3 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).

 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).

 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.
D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg (74.7 Pa).
 1. L-Rating: Not exceeding 5.0 cfm/sq. ft. (0.025 cu. m/s per sq. m) of penetration opening at and no more than 50- cfm (0.024-cu. m/s) cumulative total for any 100 sq. ft. (9.3 sq. m) at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.

F. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content:
 1. Sealants: 250 g/L.
 2. Sealant Primers for Nonporous Substrates: 250 g/L.
 3. Sealant Primers for Porous Substrates: 775 g/L.

G. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

H. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.
 1. Permanent forming/damming/backing materials.
 2. Substrate primers.
 3. Collars.
 4. Steel sleeves.

2.4 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer sleeve lined with an intumescent strip, a flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced intumescent elastomeric sheet bonded to galvanized-steel sheet.

E. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.
F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

2.5 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.

2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches (76 mm) high and with minimum 0.375-inch (9.5-mm) strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet (4.57 m) from end of wall and at intervals not exceeding 30 feet (9.14 m).

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches (150 mm) of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.

B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTOPPING SYSTEM SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.

B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under "Firestop Systems."

C. Where FM Global-approved systems are indicated, they refer to design numbers listed in FM Global's "Building Materials Approval Guide" under "Wall and Floor Penetration Fire Stops."

D. Penetration Firestopping Systems for Metallic Pipes, Conduit, or Tubing.

1. UL-Classified Systems: Match Existing
4. F-Rating: 2 hours.
5. T-Rating: 2 hours.
6. W-Rating: No leakage of water at completion of water leakage testing.
078413

PENETRATION FIRESTOPPING

7. Type of Fill Materials: As required to achieve rating.

END OF SECTION 078413
METAL DOORS AND FRAMES

SECTION 081100 - METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Prefinished steel frames for interior doors.
B. Related Sections: Section(s) related to this section include:

1.2 REFERENCES

A. ASTM International:
2. ASTM A653 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
5. ASTM D3363 Standard Test Method for Film Hardness by Pencil Test.

B. American National Standards Institute (ANSI):
1. ANSI 115.1 Specifications for Steel Door and Frame Preparation for Hardware.

C. National Fire Protection Association (NFPA):
1. NFPA 80 Fire Doors and Windows.

D. Underwriters Laboratories, Inc. (UL):
1. UL 10B Fire Tests of Door Assemblies.
2. UL 10C Positive Pressure Fire Tests of Door Assemblies.

1.3 PERFORMANCE REQUIREMENTS

A. 1 1/2 hour fire rating in accordance with UL 10B.
B. Passes positive pressure test in accordance with UL 10C.

1.4 SUBMITTALS

A. General: Submit listed submittals in accordance with Conditions of the Contract and Division 01 Submittal Procedures Section.
METAL DOORS AND FRAMES

B. Product Data: Submit product data, including manufacturer's SPEC-DATA product sheet, for specified products. Include details of design and construction and printed instructions covering installation.

C. Shop Drawings: Submit shop drawings showing layout, profiles and product components, including anchorage, accessories, finish colors and textures. Indicate installation requirements of finish hardware and reinforcements.

1. Warranty: Submit the warranty documents specified.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Installer experienced in performing work of this section who has specialized in the installation of work similar to that required for this project.

B. Regulatory Requirements: Fire-rated steel frames shall be of types tested and approved by Intertek Testing Services, Warnock Hersey and shall bear labels of same.

1. Three-sided frames shall receive a permanent embossed 90 minute label. Sidelite and borrowed lite frames shall receive a Mylar Warnock Hersey label when specified.

1.6 DELIVERY, STORAGE & HANDLING

A. Delivery: Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.

1. Factory package components in protective cartons to prevent damage during shipping.

B. Storage and Protection: Store materials protected from exposure to harmful weather and at temperature conditions recommended by manufacturer.

1. Store material on wooden skids under cover in a protected area and keep vented to avoid condensation until ready for installation.

1.7 PROJECT CONDITIONS

A. Field Measurements: Verify actual measurements/openings by field measurements before fabrication. Show recorded measurements on shop drawings. Coordinate field measurements and fabrication schedule with construction progress schedule to avoid construction delays.

1.8 WARRANTY

A. Project Warranty: Refer to Conditions of the Contract for project warranty provisions.
B. Manufacturer's Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty document executed by authorized company official. Manufacturer's warranty is in addition to, and not a limitation of, other rights Owner may have under the Contract Documents.

1. Warranty Period: 1 year.

PART 2 - PRODUCTS

2.1 PREFINISHED STEEL DOOR FRAMES

1. Refer to drawings, door schedule and details for required types and sizes of frames.

2.2 MATERIALS

A. Header and Jamb Members: Form interior door frames of ASTM A366 commercial quality cold rolled steel. Form exterior door frames of galvanized steel (A40) per ASTM A653. Provide frames in the following gages:

2. 1 3/8 Inch (35 mm) or 1 3/4 Inch (44 mm) Door Frames: [18] [20] gage.

B. Casings:

1. Steel: 22 gage cold rolled steel to ASTM A366.
2. Aluminum: 0.050 inch (1.3 mm) aluminum extrusion 6063-T5 alloy.

C. Hinge Reinforcements: 14 gage hot dipped galvanized (G60) steel to ASTM A653 (10 gage equivalent number of threads, SDI-107).

D. Strikes and Deadbolt Covers and Dust Box: 18 gage commercial quality cold rolled steel to ASTM A366.

E. Door Closer Reinforcement: Steel or aluminum in accordance with manufacturer's standard.

1. Standard Arm Mounting: Aluminum extrusion 6063-T5 alloy in accordance with manufacturer's standard.
 a. Door Guard: Aluminum extrusion 6063-T5 alloy in accordance with manufacturer's standard.
2. Parallel Arm Mounting: 16 gage galvanized (A40) steel per ASTM A653.

F. Casing Corner Alignment Clips: Pre-painted 22 gage ASTM A366 commercial quality cold rolled steel.
METAL DOORS AND FRAMES

G. Felt Silencers, Weather stripping and Smoke Gasketing (Standard Profile): In accordance with manufacturer's standard.

1. Interior Frames: Install felt silencers on the header and strike jamb. Single door opening, 3 per strike jamb. Pair door opening, 2 per header.

H. Weather stripping and Smoke Gasketing (Kerf Profile):

1. Interior and Exterior Frames: Kerf weather strip to seal opening. Schlegel QDS500 is acceptable.

I. Fasteners: In accordance with manufacturer's standards, to comply with labeling agency for fire-rated frames.

J. Paint: Frame manufacturer's standard baked-on synthetic enamel, applied over a cleaned and phosphate coated surface.

1. Application shall be by electrostatic method.
2. Finish paint dry film thickness on doors panels shall be approximately 1 mil (0.03 mm) for finished paint.
3. Factory finish paint shall pass 200 hour salt spray test in accordance with ASTM B117 and 700 hour humidity test in accordance with ASTM D1735 with no blistering.
4. Paint hardness shall meet calibrated pencil lead test to ASTM D3363.
5. Prime painted frames shall be field painted within 30 days of installation with a good quality oil based enamel as recommended, or a high quality water base latex. A flash rust inhibitor shall be used with water base latex method.

2.3 MANUFACTURED UNITS

A. General: Frames shall be prefinished type designed for installation at rough wall openings over prefinished walls.

1. Provide steel frames to receive metal casings to conceal fasteners.
2. Prepare steel frames to receive decorative wood moldings to conceal fasteners.
3. Provide accessories and fasteners necessary for field assembly and installation in accordance with frame manufacturer's standards.
4. Prepare for and provide reinforcements in accordance with manufacturer's standards as required to receive finished hardware.

B. Door Frames:

1. Construct jamb member to interlock and align with header members to form a strong joint.
2. Provide die cut mitered metal casings held tight together and in alignment with concealed corner backing pieces. Casings shall conceal all frame fasteners. Provide concealed clips to receive snap on casings.

C. Hardware Preparations:
METAL DOORS AND FRAMES

1. In accordance with an approved Hardware Schedule, ANSI A115 and manufacturer's recommendations:
 a. Mortise frames for hinges and strikes.
 b. Drill and tap or reinforce frames for mortised or surface mounted hardware.

2.4 FINISHES
 A. Frames and Door Finish:

2.5 SOURCE QUALITY CONTROL
 A. Obtain steel door frame products from a single manufacturer.

PART 3 - EXECUTION

3.1 MANUFACTURER'S INSTRUCTIONS
 A. Compliance: Comply with manufacturer's product data, including product technical bulletins, product catalog installation instructions and product carton instructions for installation.

3.2 EXAMINATION
 A. Site Verification of Conditions: Verify that conditions of substrates previously installed under other sections are acceptable for product installation in accordance with manufacturer's instructions.

3.3 INSTALLATION
 A. Prefinished Steel Door Frames:
 1. Install frames plumb and square, in accordance with shop drawings and manufacturer's instructions. Verify opening and dimensions with shop drawings. Use door as a template to ensure proper alignment and clearances.
 2. Attach hinges and hang door in frame. Adjust frame to door for equal and uniform clearance between top and sides of door and frame.
 3. Secure frame to wall with the appropriate type fasteners. Install casing on frame.
 4. Install silencers on interior door frames. Install weather stripping on exterior door frames. Install smoke gaskets as required.
 5. Adjust strike plate to hold door tight to stops when closed.
 6. Install fire-rated door frames in accordance with NFPA 80.
3.4 CLEANING

A. Cleaning: Remove temporary coverings and protection of adjacent work areas. Repair or replace damaged installed products. Clean installed products in accordance with manufacturer's instructions prior to Owner's acceptance. Remove construction debris from project site and legally dispose of debris.

3.5 PROTECTION

A. Protection: Protect installed product and finish surfaces from damage during construction.

1. Repair or replace damaged or defective frames.
2. Touch up damaged areas of factory-applied finishes with aerosol spray cans of same paint as used in factory.

END OF SECTION
DOOR HARDWARE AND ACCESSORIES

SECTION 087100 - METAL DOORS AND FRAMES

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Hinges and Pivots.
B. Stops.
C. Pulls and Plates.
D. Flush Bolts and Coordinators.

1.2 REFERENCES

B. ANSI A156.1
C. ANSI A156.26
D. BHMA - Builder Hardware Manufacturers Association
 1. UL 10C
 2. UL 634

1.3 SUBMITTALS

A. Product Data: Manufacturer's data sheets on each product to be used, including:
 1. Preparation instructions and recommendations.
 2. Storage and handling requirements and recommendations.
 3. Installation methods.
B. Shop Drawings: Manufacturer's approved shop drawings are required detailing the application of each product specified.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: All equipment specified in this section will be provided by a single manufacturer with a minimum of ten (10) years experience manufacturing door hardware.
B. Installer Qualifications: All products listed in this section are to be installed by a single installer with a minimum of five (5) years demonstrated experience in installing products of the same type and scope as specified.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store products in manufacturer's unopened packaging until ready for installation.

1.6 WARRANTY
A. At project closeout, provide to the Owner or Owner's Representative an executed copy if the manufacturer's Limited Warranty against Manufacturing Defects.

PART 2 PRODUCTS

2.1 Flush Bolts and Coordinators
 A. Manual Flush Bolts:
 a. Conformance: Meets ANSI A156.16.
 b. Throw: 3/4 inch (19mm).
 c. Backset: 15/32 inch (12mm).

2.2 Lock - Provide stainless steel mortise lock with ANSI 497 strike

2.3 Full mortise stainless steel ball bearing hinges

2.4 Parallel arm door closer with sweep and latch speed adjustment.

2.5 Door Panic Device – provide rim device on active door.

2.6 5 inch Saddle type threshold

PART 3 EXECUTION

3.1 PREPARATION
 A. Clean surfaces thoroughly prior to installation.
 B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.2 INSTALLATION
 A. Install in accordance with manufacturer's instructions.

3.3 PROTECTION
 A. Protect installed products until completion of project.
 B. Touch-up, repair or replace damaged products before Substantial Completion.

END OF SECTION
SECTION 09900 PAINTING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes surface preparation and field painting of the following:
 1. Exposed conduits and conduit support stanchions and plates.
 2. Wall painting to match existing where restoration is required.
 3. Surface preparation, priming, and finish coats specified in this Section are in addition to shop
 priming and surface treatments.

B. Paint exposed surfaces of exposed conduits where approved by the Owner and walls that were
 disrupted to accommodate new electrical. Colors to match existing and/or adjacent utilities
 and/or walls. The entire wall section disrupted by new conduit penetrations shall be painted.

C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and
 labels.

1.3 SUBMITTALS

A. Product Data: For each paint system specified. Include block fillers and primers.
 1. Material List: Provide an inclusive list of required coating materials. Indicate each material
 and cross reference specific coating, finish system, and application. Identify each material by
 manufacturer's catalog number and general classification.
 2. Manufacturer's Information: Provide manufacturer's technical information, including label
 analysis and instructions for handling, storing, and applying each coating material proposed
 for use.

B. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors avail-
 able for each type of finish coat material indicated.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain block fillers, primers, and undercoat materials for each coating sys-
 tem from the same manufacturer as the finish coats.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers
 bearing manufacturer's name and label.

B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum
 ambient temperature of 45 deg F. Maintain containers used in storage in a clean condition, free
 of foreign materials and residue.
 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste dai-
 ly. Take necessary measures to ensure that workers and work areas are protected from fire
 and health hazards resulting from handling, mixing, and application.

1.6 PROJECT CONDITIONS

A. Do not apply paint in when the relative humidity exceeds 85 percent; or at temperatures less than
 5 deg F above the dew point; or to damp or wet surfaces.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products in the paint schedules.
B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 - Benjamin Moore & Co.
 - O'Leary Paint Co.
 - PPG Industries, Inc.
 - Pratt & Lambert, Inc.
 - Standard Detroit Paint Co.
 - Sherwin Williams Co.

2.2 PAINT MATERIALS, GENERAL

A. Material Compatibility: Provide block fillers, primers, undercoats, and finish coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
B. Material Quality: Provide manufacturer's best quality paint material of the various coating types specified. Paint material containers not displaying manufacturer's product identification will not be acceptable.
C. Colors: Provide colors selected by the Owner to match existing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.
 1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.
B. Provide seven days' notice to the Owner's Representative prior to the application of epoxy paints.
C. Coordination of Work: Ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.
 1. Notify the Owner about anticipated problems using the materials specified over substrates primed by others.

3.2 PREPARATION

A. Cleaning, General: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.
 1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
PAINTING

B. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition and as specified.
 1. Provide barrier coats over incompatible primers or remove and reprime.
 2. For coatings applied over previously painted surfaces, test application to check for lifting and other adhesion problems. Perform test in an isolated area where practicable.
 3. Ferrous Metals: Clean ungalvanized ferrous metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with the Steel Structures Painting Council's (SSPC) recommendations.
 a. Treat bare and sandblasted or pickled clean metal with a metal treatment wash coat before priming.
 b. Touch up bare areas and shop applied prime coats that have been damaged. Wire brush, clean with solvents recommended by paint manufacturer, and touch up with the same primer as the shop coat.

C. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.
 1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.
 2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.
 3. Use only thinners approved by paint manufacturer and only within recommended limits.

3.3 APPLICATION

A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.
 1. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.
 2. Provide finish coats that are compatible with primers used.
B. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.
 1. The number of coats and the film thickness required are the same regardless of application method. Do not apply succeeding coats until the previous coat has cured as recommended by the manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer's written instructions, sand between applications.
 2. Omit primer on metal surfaces that have been shop primed and touchup painted.
 3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.
 4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, does not deform or feel sticky under moderate thumb pressure, and where application of another coat of paint does not cause the undercoat to lift or lose adhesion.
C. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer's written instructions.
 1. Brushes: Use brushes best suited for the type of material applied. Use brush of appropriate size for the surface or item being painted.
PAINTING

2. Rollers: Use rollers of carpet, velvet back, or high pile sheep's wool as recommended by the manufacturer for the material and texture required.

3. Spray Equipment: Use airless spray equipment with orifice size as recommended by the manufacturer for the material and texture required.

D. Minimum Coating Thickness: Apply paint materials no thinner than manufacturers recommended spreading rate. Provide the total dry film thickness of the entire system as recommended by the manufacturer.

E. Prime Coats: Before applying finish coats, apply a prime coat of material, as recommended by the manufacturer, to material that is required to be painted or finished and that has not been prime coated by others. Recoat primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn through or other defects due to insufficient sealing.

F. Pigmented (Opaque) Finishes: Completely cover surfaces as necessary to provide a smooth, opaque surface of uniform finish, color, appearance, and coverage. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, reprises, or other surface imperfections will not be acceptable.

G. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.

3.4 CLEANING

A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
 1. After completing painting, clean glass and paint spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.
 2. Dispose wash water from latex paint to the sanitary sewer. Excess latex paint shall be salvaged for reuse or solidified for disposal with other construction materials. Dry empty latex paint cans and dispose with other construction materials. Coordinate disposal of alkyd paints and solvents with University project manager.

3.5 PROTECTION

A. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.

B. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.
 1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

END OF SECTION 09900
PART 1 - GENERAL

1.1 SCOPE OF SUPPLY

This section includes design, performance, and technical requirements for Supplier-furnished electrical equipment. The scope of supply shall include the following items:

Low voltage power distribution equipment, including the following:

- Low voltage switchboards.
- Low voltage panelboards.
- Dry type transformers.

1.2 ITEMS FURNISHED BY OTHERS AND INTERFACES

Items furnished by others and not in this scope of supply are identified as follows:

(Later)

1.3 PERFORMANCE AND DESIGN REQUIREMENTS

Performance and design requirements for the Supplier-furnished electrical equipment are as required by Supplier's design, as indicated in Article 16051.2, on the Electrical Design and Equipment Data Sheets included at the end of this section, and as follows:

<table>
<thead>
<tr>
<th>Design ambient temperature</th>
<th>104° F (40° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site elevation</td>
<td>Less than 3,300 ft (1,000 m)</td>
</tr>
</tbody>
</table>

1.4 CODES AND STANDARDS

Work performed under these specifications shall be done in accordance with the following codes and standards. Unless otherwise specified, the applicable governing edition and addenda to be used for all references to codes or standards specified herein shall be interpreted to be the jurisdictionally approved edition and addenda. If a code or standard is not jurisdictionally mandated, then the current edition and addenda in effect at the date of this document shall apply. These references shall govern the work except where they conflict with the Purchaser's specifications. In case of conflict, the latter shall govern to the extent of such difference:
Work	In Accordance With
All | The latest revisions of the applicable ANSI C37, NEMA ICS2, IEC, and UL standards

1.5 NOT USED

1.6 APPROVED MANUFACTURERS OF COMPONENTS

For the following components, only the listed manufacturers are recognized as maintaining the level of quality of workmanship required by these specifications. If the Supplier wants to propose a non-listed manufacturer that is considered to provide an equivalent level of quality, this manufacturer must be identified and supporting testimony provided. Acceptance of the manufacturer as a substitute is at the discretion of the Purchaser:

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
</tr>
</thead>
</table>

1.7 NOT USED

1.8 NOT USED
PART 2 – PRODUCTS

2.1

2.1.2 Power Circuit Breakers

The switchgear shall be furnished with high voltage power circuit breakers of standard
drawout design with the following design features:

Shall not be forced cooled.

All secondary device contact surfaces and main contact surfaces shall be
silver-to-silver, designed and fabricated to be self-aligning and to resist
burning and deterioration.

Removable breaker units of the same type and ampere capacity shall be wired
alike and shall be mechanically and electrically interchangeable.

Shall be a 3-pole single-throw unit, complete with operating mechanism and
other required devices, mounted on a drawout type carriage. Each operating
mechanism shall be of the stored energy type with a closing coil and single
shunt trip coils. The closing devices, tripping devices, and charging motor
shall be designed and rated for operation on the nominal control voltage
specified.

Operating mechanisms shall be trip-free in any position and shall be
antipump. The breaker main contacts shall not touch or arc across into a
faulted circuit when a breaker close signal is received while a trip signal is
being applied.

Each breaker shall be furnished with a manual trip push button which
mechanically trips the breaker. The manual trip push button and its associated
breaker trip linkage shall have no common components with the electrical trip
mechanism, except the final breaker release device.

Each breaker shall be furnished with an operations counter which shall be
readable from the front of the switchgear unit with the breaker in the
connected position.

2.1.2.1 Rating

Power circuit breakers furnished under these specifications shall be provided with the
ratings as required by the Supplier's design. All current ratings shall be at least
10 percent greater than the values required by the design. Voltage ratings shall be in
accordance with the indicated industry standards for the nominal system voltage
utilized.

2.1.2.2 Auxiliary contacts
Each breaker shall be furnished with a sufficient number of auxiliary contacts and auxiliary switch contacts to provide all necessary interlocks for operation of the breaker. In addition, two normally open and two normally closed sets of spare contacts shall be provided and wired out to terminal blocks for use by the Purchaser.

Breaker mechanism operated auxiliary switches shall operate only when the breaker is in the connected position.

2.1.2.3 Breaker control devices
Each remotely controlled breaker shall be furnished with a local control switch and breaker position switch arranged to provide the following control of breaker operation:

<table>
<thead>
<tr>
<th>Breaker Drawout Position</th>
<th>Breaker Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remote Control</td>
</tr>
<tr>
<td></td>
<td>Close</td>
</tr>
<tr>
<td>Connected</td>
<td>X</td>
</tr>
<tr>
<td>Test</td>
<td>--</td>
</tr>
<tr>
<td>Disconnected</td>
<td>--</td>
</tr>
</tbody>
</table>

Each circuit breaker local control switch shall have a trip/close escutcheon, shall have a center normal position, shall be spring return to normal from close and trip, shall have red and green targets to indicate the latest operation of the switch, and shall be furnished with indicating lights. One set of these contacts shall be wired out to terminal blocks for use by the Purchaser.

The breaker position switch shall be furnished with four stages. Two breaker position switch contacts shall close only when the breaker is in the connected position; the remaining two contacts shall close only when the breaker is in the test position.

2.1.3 Power and Control Conductors
Switchgear power and control conductors shall be furnished in accordance with the requirements of the articles which follow. Provisions shall be made for bus expansion, to prevent undesirable or destructive mechanical strains in the bus supports and connections, through a full ambient temperature range from -13° F (-25° C) to +104° F (+40° C). Expansion joints shall be furnished where required.

2.1.4 NOT USED

2.1.5 NOT USED

2.1.6 NOT USED
2.2.5 NOT USED

2.2.6 Control Power

Electrical power for control and instrumentation shall be as required by Supplier's design.

Where dc control power is specified on the Electrical Design and Equipment Data Sheets, the Supplier shall provide a common bus throughout the controller assembly requiring a single connection of dc control power from the Purchaser. Suitable branch circuit protection and control power disconnecting means shall be provided for each controller unit.

The paragraphs which follow apply only to ac control power.

Where ac control power is specified on the Electrical Design and Equipment Data Sheets, all control power requirements necessary to operate each controller shall be provided by means of individual control power transformers. Each controller unit shall be provided with an individual transformer for control and instrumentation associated with that controller only.

Control power transformers shall be rated not less than 1 kVA. Each control power transformer shall be provided with primary and secondary fuses. The size of each control power transformer shall be clearly indicated on each section schematic and wiring diagram submitted for review.

Control power interlocking provisions shall be provided to allow testing of the control operation of each controller from an external source of control power with the contactor disconnected and isolated from the main bus.

Control power interlocking provisions shall not allow the control power transformer of the controller to be energized during testing as described above.

The Supplier shall furnish a manually operated switch to transfer the control power from the normal source to the external test circuit source.

2.2.7 NOT USED

2.2.8 Wiring and Wiring Diagrams

The Supplier shall provide internal wiring, connections, and diagrams in accordance with the requirements of the articles which follow.

2.2.8.1 Control and instrument wiring

All low voltage control and instrument wiring used within the controller assemblies.

All internal wiring shall be neatly and carefully installed and shall be terminated on terminal blocks or devices. Conductors and terminals shall be plainly lettered or
marked in accordance with the manufacturer's connection diagrams. Any controller assembly that is split for shipment shall have terminal blocks adjacent to the split and shall be provided with wiring required to interconnect the shipping sections.

All leads for external circuit wiring shall be connected to terminal blocks located for convenient connection of external circuits. Splices will not be permitted in control wiring or instrument leads.

The minimum sizes of wire used in the controller assembly for control and instrumentation shall be in accordance with the following table:

<table>
<thead>
<tr>
<th>Minimum Wire Service</th>
<th>Size, AWG (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supplies</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Current transformer circuits</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Indicating lights and annunciator circuits</td>
<td>16 (1.5)</td>
</tr>
<tr>
<td>All other wiring</td>
<td>14 (2.5)</td>
</tr>
</tbody>
</table>

All spare contacts on relays, control switches, limit switches, or similar devices shall be wired to accessible terminal blocks for the Purchaser's future connections. All wiring leaving an enclosure shall leave from terminal blocks and not from other devices within the enclosure.

Terminal blocks shall not be mounted in compartments containing cable or bus operating at voltages above 600 volts.

Control and potential buses, as required, shall be switchboard wire installed at the rear of the instrument and control compartment.

Each terminal block, conductor, relay, circuit breaker, fuse block, and other auxiliary devices and terminals shall be permanently labeled to coincide with the identification indicated on the drawings. All wiring terminations shall be identified by legible markings on the device terminals.

2.2.8.2 Diagrams

Wiring diagrams shall be in accordance with the requirements specified herein. Controller schematic, connection, and interconnection diagrams furnished by the Supplier shall be based on schematic (elementary) diagrams and connection diagrams furnished by the Purchaser.

The typical schematic diagram of each type of controller specified shall be submitted with the proposal.

The Supplier shall prepare his schematic (elementary), connection, and interconnection diagrams which shall have terminal designations and terminal arrangement acceptable to the Engineer.
The complete connection diagram of each controller unit shall be on an individual sheet. Information on each connection diagram sheet shall include point-to-point wiring of the entire controller as it will be physically constructed, including wiring on the contactor itself. Elementary diagrams of control and instrument circuits, contact arrangement of switches, and internal wiring of relays and instruments for each section shall be on additional sheets as required. Interconnection diagrams shall be on separate sheets. All sheets shall be the same size.

Information indicated on the Supplier's drawings shall include wiring of the individual units as they will actually appear in the assembly, contact arrangements of switches, and internal wiring of relays and instruments.

Each item of mounted equipment indicated on the diagrams shall be identified by item number and name.

2.2.8.3 Wiring method

If the wiring method is to be an internal programmable logic controller (PLC) as indicated on the Electrical Design and Equipment Data Sheets, then the Supplier shall furnish a Purchaser-approved PLC in each shipping split of each controller assembly. All control wiring from the device contacts and protective relays to the internal PLC shall be installed by the Supplier as indicated on the typical schematics. The Purchaser will program the PLCs as required.

If a remote PLC is to be used as indicated on the Electrical Design and Equipment Data Sheets, the Supplier has no responsibility to provide or connect device contacts and protective relays to the PLC.

2.2.9 Tightening of Connections

The Supplier shall include on his erection and assembly drawings complete information for tightening of all electrical connections secured with bolts or studs. The information furnished shall include torque wrench settings or complete details of other tightening procedures recommended for bus joints, connector attachments, and contact attachments.

2.3 NOT USED

2.4 Low Voltage Power Distribution Equipment

When specified to be in the Supplier's scope of supply, the Supplier shall supply low voltage power distribution equipment in accordance with the articles below and as required by the Supplier's design. The design shall be in accordance with accepted industry practices and standards for electrical power generation.

2.4.1 Low Voltage Panelboards and Switchboards
Low voltage power panelboards and switchboards shall be furnished in accordance with the following articles.

2.4.1 Enclosures

Panelboards and switchboards shall be furnished with enclosures of the types as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Description of Enclosure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoors - clean area</td>
<td>Indoor with gasketed cover, ventilated</td>
</tr>
<tr>
<td>Indoors - dusty area</td>
<td>Indoor dustproof enclosure, unventilated</td>
</tr>
<tr>
<td>Outdoors - protected</td>
<td>Combination outdoor/dustproof, unventilated</td>
</tr>
<tr>
<td>Outdoors - unprotected</td>
<td>Wash-down/dustproof, unventilated</td>
</tr>
<tr>
<td>Hazardous</td>
<td>Listed for conditions present</td>
</tr>
</tbody>
</table>

2.4.2 Busing

Main, neutral, and ground busing shall be copper. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design.

2.4.3 Circuit breakers

Main breakers shall be provided in all panelboards and switchboards. Main and feeder breakers shall be molded case, bolt-in type. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design. Breakers and busing shall be individually rated and labeled for the required short-circuit amperes available. Tandem or miniature circuit breakers shall not be used.

2.4.4 Spares

Total expected load on each panelboard or switchboard shall not exceed 80 percent of its continuous current rating. At least one spare feeder breaker of each size and number of poles used for loads shall be provided in each panelboard and switchboard. At least six poles of spare space shall be provided in each panelboard and switchboard.

2.4.2 Dry Type Distribution Transformers

Dry type distribution transformers shall be used indoors in dry areas only and shall meet the following requirements:
Shall have copper windings rated for 302°F (150°C) temperature (by resistance) rise above 104°F (40°C) ambient.

Shall be sized to approximately match the nominal ampacity of the panelboard or switchboard which is connected to its secondary terminals.

Sound level shall not exceed 45 dBA when measured in accordance with NEMA standards.

When installed in areas where dirt and dust are present, shall have filters installed on vent openings or shall be non-ventilated.

Shall be appropriately derated when the ambient temperature exceeds 104°F (40°C).

2.4.3 Nameplates

Engraved nameplates shall be furnished for the front of each item of equipment.

PART 3 – EXECUTION

Not Applicable.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
 B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

C. Multi-conductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for nonmetallic-sheathed cable, Type NM with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

E. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway, Armored cable, Type AC, Metal-clad cable, or Type MC as per applicable code.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

I. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

J. Branch Circuits in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

K. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.7 FIRESTOPPING
 A. Apply fire-stopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 C. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements.
 a. Panelboards, uninterruptable power sources, transformers, and associated switches.
 D. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
 E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.

B. Qualification Data: For testing agency and testing agency's field supervisor.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to Operation and Maintenance Data include the following:
 a. Instructions for periodic testing and inspection of grounding features
1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 NOT USED

2.2 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications

Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross
section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad 3/4 inch by 10 feet.

1. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.

1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.

2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

D. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.

3. Connections to Ground Rods at Test Wells: Bolted connectors.
3.2 NOT USED

3.3 NOT USED

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Receptacle circuits.
 4. Three-phase motor and appliance branch circuits.
 5. Flexible raceway runs.
 6. Armored and metal-clad cable runs.
 7. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Owner’s representative promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawing: For fabrication and installation details for electrical hangers and support systems.

1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
C. Delegated-Design Submittal: For hangers and supports for electrical systems.

1. Include design calculations and details of trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which hangers and supports will be attached.
3. Size and location of initial access modules for acoustical tile.
4. Items penetrating finished ceiling, including the following:
 a. Access panels.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line,; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.

3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

7. Channel Dimensions: Selected for applicable load criteria.

B. Aluminum Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

2. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

4. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

5. Channel Dimensions: Selected for applicable load criteria.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing CO., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 4000psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Metal wireways and auxiliary gutters.
 3. Surface raceways.

B. Related Requirements:

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NOT USED

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

A. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

B. Wireway Covers: Screw-cover type unless otherwise indicated.

C. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

B. Surface Metal Raceways: Galvanized steel with snap on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Owner.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, with gasketed cover.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

F. Cabinets:
 1. NEMA 250, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 NOT USED

2.7 NOT USED

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Indoors: Apply raceway products as specified below unless otherwise indicated:

 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
c. Mechanical rooms.
d. Gymnasiums.

4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Comply with NEMA FB 2.10.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

D. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Arrange stub-ups so curved portions of bends are not visible above finished slab.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. Support conduit within 12 inches of enclosures to which attached.
H. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

Q. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

U. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

3. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

4. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

V. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

W. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

X. Locate boxes so that cover or plate will not span different building finishes.

Y. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

AA. Set metal floor boxes level and flush with finished floor surface.

BB. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
3.3 NOT USED

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply
 with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and
 Cabling."

3.5 FIRESTOPPING
 A. Install fire-stopping at penetrations of fire-rated floor and wall assemblies.

3.6 PROTECTION
 A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by
 manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating
 recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water-stop unless otherwise indicated.
 B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
 C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
 D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
 E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLING

F. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, water-stop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber water-stop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 4000-psi 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLING

2. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Debur after cutting.
 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLES

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position water-stop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels, including arc-flash warning labels.
8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 Manufacturers:

A. Manufacturers: Subject to compliance with requirements:

IDENTIFICATION FOR ELECTRICAL SYSTEMS

2. Brady.
4. IEM Products, Inc.
5. Panduit.
7. Safety Label Solutions.
9. Utility Safeguard, LLC.

2.2 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F ambient; 180 deg F, material surfaces.

2.3 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
B. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."
C. Warning labels and signs shall include, but are not limited to, the following legends:
IDENTIFICATION FOR ELECTRICAL SYSTEMS

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.4 LABELS

A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pre-tensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.

C. Self-Adhesive Labels:
 1. Preprinted, 3-mil thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.
 2. Vinyl, thermal, transfer-printed, 3-mil thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 a. Nominal Size: 3.5-by-5 inch.
 3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 4. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.5 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pre-tensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.6 TAPES AND STENCILS:

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4 inch wide black stripes on 10 inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.

D. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.7 Tags

A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.

B. Write-On Tags:

1. Polyester Tags: 0.010 inc thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.8 Signs

A. Laminated Acrylic or Melamine Plastic Signs:

1. Engraved legend.
2. Thickness:
 a. For signs up to 20 sq. inches, minimum 1/16-inch.
 b. For signs larger than 20 sq. inches, 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Punched or drilled for mechanical fasteners.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch centers. Stop stripes at legends. Apply stripes to the following finished surfaces:
 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 2. Wall surfaces directly external to raceways concealed within wall.
 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive vinyl labels. Install labels at 30-foot maximum intervals.
C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

D. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase-and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

F. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

G. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

H. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and hand-holes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

I. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive vinyl labels with the conductor designation.

J. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

L. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

M. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

N. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

O. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

P. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

Q. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch high letters for emergency instructions at equipment used for power transfer.

R. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Substations.
 h. Emergency system boxes and enclosures.
 i. Motor-control centers.
 j. Enclosed switches.
 k. Enclosed circuit breakers.
 l. Enclosed controllers.
 m. Variable-speed controllers.
 n. Push-button stations.
 o. Power-transfer equipment.
 p. Contactors.
 q. Remote-controlled switches, dimmer modules, and control devices.
 r. Battery-inverter units.
 s. Battery racks.
 t. Power-generating units.
 u. Monitoring and control equipment.
v. UPS equipment.

END OF SECTION 260553
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes: distribution, energy efficient dry-type transformers rated 600 V and less, with capacities up to 1500 kVA. Nominally: 408V 3Ø 60Hz delta input; transformer to output 208V 3Ø 60Hz/ (120V 1Ø).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For testing agency.
LOW VOLTAGE TRANSFORMERS

C. Source quality-control reports.
D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. GE Electrical Distribution & Control.
 3. Siemens Industries, Inc.
 4. Square D/Groupe Schneider NA.

2.2 GENERAL TRANSFORMER REQUIREMENTS
A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.
D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
LOW VOLTAGE TRANSFORMERS

E. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper.

F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.

D. Enclosure: Ventilated.
 1. NEMA 250, type 2: Core and coil shall be encapsulated within resin compound utilizing a vacuum pressure impregnation process to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.

E. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: NSF/ANSI 61 gray.

F. Taps for Transformers 3 kVA and Smaller: None

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature. Chosen

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115 -deg C rise above 40-deg C ambient temperature.

K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for non-sinusoidal load current-handling capability to the degree defined by designated K-factor. Chosen
LOW VOLTAGE TRANSFORMERS

1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
2. Indicate value of K-factor on transformer nameplate.
3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.

M. Neutral: Rated 200 percent of full load current for K-factor rated transformers.

N. Wall Brackets: Manufacturer's standard brackets or floor mounted.

O. Fungus Proofing: Permanent fungicidal treatment for coil and core.

P. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 1. 51 to 150 kVA: ~55 dBA +0-10
 2. 751 to 1000 kVA: ~70 dBA +0-10
 3. 1001 to 1500 kVA: ~70 dBA +0-10

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
 2. Ratio tests at the rated voltage connections and at all tap connections.
 3. Phase relation and polarity tests at the rated voltage connections.
 4. No load losses, and excitation current and rated voltage at the rated voltage connections.
 5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
 6. Applied and induced tensile tests.
 7. Regulation and efficiency at rated load and voltage.
 8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb.

1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Perform tests and inspections and prepare test reports.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

E. Remove and replace units that do not pass tests or inspections and retest as specified above.

F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.

 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
LOW VOLTAGE TRANSFORMERS

3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS
 A. ATS: Acceptance testing specification.
 B. GFCI: Ground-fault circuit interrupter.
 C. GFEP: Ground-fault equipment protection.
 D. HID: High-intensity discharge.
 E. MCCB: Molded-case circuit breaker.
 F. SPD: Surge protective device.
 G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
1.8 QUALITY ASSURANCE
 A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING
 A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
 B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS
 A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F to plus 105 deg F.
 B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet (2000 m).
 C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify WSU no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without WSU written permission.
 3. Comply with NFPA 70E.

1.11 WARRANTY
 A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Enclosures: Surface-mounted, dead-front cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Height: 84 inches (2.13 m) maximum.
3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
7. Finishes:
 a. Panels and Trim: Galvanized Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Galvanized Steel.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
F. Incoming Mains:
 1. Location: Convertible between top and bottom.
 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

G. Phase, Neutral, and Ground Buses:
 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
 6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
 7. Split Bus: Vertical buses divided into individual vertical sections.

H. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

I. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting
and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

J. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: Ten percent.

K. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Panelboards, Overcurrent Protective Devices, Controllers, Contractors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.
PANELBOARDS

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker or lugs only.

G. Branch Overcurrent Protective Devices: Fused switches.

H. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

2.4 BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: lugs only.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.
F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. MCCB: Comply with UL 489, to meet available fault currents.
 1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

 3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
PANELBOARDS

7. **Arc-Fault Circuit Interrupter Circuit Breakers**: Comply with UL 1699; 120/240-V, single-pole configuration.
8. **Subfeed Circuit Breakers**: Vertically mounted.

C. **Fused Switch**: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. **Fuses and Spare-Fuse Cabinet**: Comply with requirements specified in Section 262813 "Fuses."
 2. **Fused Switch Features and Accessories**:
 a. Standard ampere ratings and number of poles.
 b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

2.6 IDENTIFICATION

A. **Panelboard Label**: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. **Breaker Labels**: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. **Circuit Directory**: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. **Circuit Directory**: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. **Accessory Set**: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. **Portable Test Set**: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:
 1. Install panelboards on cast-in-place concrete equipment base(s) where applicable.
 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 3. Comply with requirements for seismic control devices.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90” above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
262416

PANELBOARDS

J. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.

K. Mount surface-mounted panelboards to steel slotted supports 5/8 inch to 1 1/4 inch in depth. Orient steel slotted supports vertically.

L. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

M. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

N. Install filler plates in unused spaces.

O. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

P. Arrange conductors in gutters into groups and bundle and wrap with wire ties. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate.

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate.

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.

4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION
A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Isolated-ground receptacles.
5. Cord and Plug receptacles.
6. Communications outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.

2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from
mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.4 GFCI RECEPTACLES

A. General Description:
 1. Straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

2.5 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
 1. Description:
 a. Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.8 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: Per Owner, match existing in room or area of work.
 2. Wiring Devices Connected to UPS: Per Owner, Yellow.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailling existing conductors is permitted, provided the outlet box is large enough.
D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Panelboards.
 b. Switchboards.
 c. Enclosed switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit [in electronic format suitable for use in coordination software and in PDF format.

5. Coordination charts and tables and related data.

6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data, include the following:
1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 3. Ferraz Shawmut, Inc.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
 4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, time delay.
FUSES
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
7. Type T: 600-V, zero- to 800-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
1. Feeders: Class RK1, fast acting Class J, fast acting.
2. Power Electronics Circuits: Class J, high speed.
3. Other Branch Circuits: Class RK1, time delay.
4. Control Transformer Circuits: Class CC, time delay, control transformer duty.

3.3 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Non-fusible switches.
 3. Molded-case circuit breakers (MCCBs).
 5. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge fuse interiors to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
6. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
7. Lugs: Mechanical type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
6. Lugs: Mechanical type, suitable for number, size, and conductor material.
7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. See WSU design standards.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:

1. Instantaneous trip.
2. Long- and short-time pickup levels.
3. Long- and short-time time adjustments.
4. Ground-fault pickup level, time delay, and I2t response.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system,
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 8. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 9. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 12. Electrical Operator: Provide remote control for on, off, and reset operations.

2.4 MOLDED-CASE SWITCHES

A. NOT USED

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One NO contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, [Type 1] <Insert type>.
 2. Outdoor Locations: NEMA 250, Type 3R.
 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in section 260529.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges

END OF SECTION 262816
PART 1 - SCOPE

1.1 SYSTEM

These specifications describe a high efficiency continuous duty, three-phase, on-line, double conversion, solid-state Uninterruptible Power Supply system (UPS). The UPS shall operate utilizing the existing power distribution system to provide high quality, uninterruptible power to critical loads.

The model T90S31KS6XSN UPS shall consist of an AC/DC multi-level Insulated Gate Bipolar Transistor (IGBT) Rectifier, DC/DC Converter/Battery Charger, DC/AC multi-level IGBT Inverter, integral static bypass, front-accessible controls, display, and monitor.

1.2 Preferred UPS Vendor

The contractor is to purchase and supply the specified Toshiba UPS from WSU preferred UPS vendor (Ancona Controls). Contact information as follows:

WSU Assign Sales Rep: Beth Ancona
Ancona Controls
28021 Grand Oaks Ct.
Wixom, MI 48393
248-924-2747

PART 2 - SYSTEM DESCRIPTION

2.1 Applicable Standards:

The UPS shall be designed in accordance with and be compliant with the following sections of the current revisions of the following standards:

- UL 1778/UL Listed
- FCC Class A, Article 47, Part 15.B
- ISO 900, ISO 14001
- ANSI C62.41
- NFPA – 70 National Electric Code
- OSHA

2.2 Components:
The UPS shall consist of the following components:

1. Multi-level IGBT AC/DC Rectifier
2. IGBT DC/DC Battery Converter/Charger
3. Multi-level IGBT DC/AC Inverter
4. Hybrid Integral Static Bypass (Thyristor switch with wrap around contactor)
5. Microprocessor Logic and Control Panel
6. Battery Cabinets with DC Breaker (T90-1K007EN-VC)
7. Maintenance Bypass Panel (Circuit Breakers) (T90MBSS10K-S3KK)
8. RemotEye II UPS remote communications and web-based monitor card
9. Network communications with MODBUS interface adapter

2.3 System Operation:

The UPS shall operate as a fully automatic on-line system in the following modes:

1. Normal

 IGBT Rectifier converts AC input power to DC power for the inverter and for charging the batteries. The IGBT inverter supplies clean and stable AC power continuously to the critical load. The UPS Inverter output shall be synchronized with the bypass AC source when the bypass source is within the AC input voltage and frequency specifications.

2. Loss of Main Power

 When Main Power is lost, the batteries shall automatically back up the inverter so there is no interruption of AC power to the critical load.

3. Return of Main Power

 The system shall recover to the operating mode in Item 1 and shall cause no disturbance to the critical load while simultaneously recharging the backup battery.

4. Transfer to Bypass AC source

 If the UPS becomes overloaded the UPS controls shall automatically transfer the critical load from the inverter output to the bypass AC source without interruption. When the overload condition is removed, after a preset “hold” period the UPS will automatically retransfer the critical load from the bypass to the inverter output without interruption of power to the critical load.
5. Maintenance Bypass

An optional manual make-before-break maintenance bypass panel may be provided to electrically isolate the UPS for maintenance or test without affecting load operation. This bypass mode when selected facilitates testing or repair intervals.

PART 3 - GENERAL CONDITIONS FOR INSTALLATION

3.1 Required Output Capacity:

The 100 kVA (90 KW) UPS unit shall be capable of being operated either independently or connected in parallel.

3.2 UPS Environment:

3.2.1 Standard Environmental Parameters

- Operating Temperature Allowance: 77°F +/- 3°F (25°C) Environ within enclosure
- Operating Temperature: 32°F to 104°F (0°C to 40°C)
- Operating Humidity: 5 - 95% (Non-condensing)
- Altitude: < 700 ft. (<213 m) (without derating)

3.2.2 Discharge Heat from UPS at full load.

100 kVA: ≥14,100 Btu/Hr

3.2.3 Grounding System:

It is necessary that UPS electrical loads be grounded to the same facility ground as the UPS ground, and that ground wiring shall be for the exclusive use of the UPS and load. Ground wiring for resistance shall be less than ≤ 10 Ohms between the facility ground net and the UPS.

3.2.4 Clearances for installation

- Ceiling Level: 30" minimum from top of UPS to ceiling
- Front: 40" minimum for maintenance (Local and regional codes may apply)
- Bottom: Knockouts for power cable access
- Rear: Zero clearance possible
- Sides: Zero clearance if using bottom cable
3.2.5 Cable Access

100 kVA: Bottom access standard
: Side knockouts for left/right side access
standard (For use with Optional Side Car)

3.2.6 Seismic Mount Provisions
: Manufacturer to specify installation geometry requirements.
(Detroit BOCA inputs basis)

PART 4 - SYSTEM PARAMETERS

4.1 UPS Requirements:

4.1.1 General Requirements:

Rated Output Capacity : 100 kVA
(90 kW)
AC/DC Rectifier Type : AC/DC multi-level IGBT Rectifier
DC/AC Inverter Type : DC/AC multi-level IGBT Inverter
External Dimensions
100 kVA : 29.5 in. x 40 in. x 78.7 (80.6*) in.
Weight
100 kVA : 880 lbs
Paint Color : Black (Munsell N1.5)

4.1.2 AC Input:

Configuration : 3-Phase/3-Wire + Ground
Rated Voltage : 480V
Voltage Variation : +15% to –20%
Rated Frequency : 60Hz
Frequency Variation : +/-10%
Input Power Factor : Greater than 0.99 lagging at 25%-115% load
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 100kVA/90KW UPS Unit

Current THD : 3% maximum THD at 60%–100% load 6% maximum THD at 25%–59% load (No input harmonic filter required)

4.1.3 Charging Function:

- DC Nominal Voltage : 480 V
- AC Ripple on DC Bus : < 0.2% of DC Voltage
- DC Voltage Range : 400 V to 545 V
- DC Float Charging Voltage : 545 V Maximum charging current: 100 kVA : 25 A
- AC Ripple on DC Charging Circuit : 0.23%

4.1.4 Bypass Input:

- Configuration : 3-Phase/3-Wire + Ground
- Rated Voltage : 480 V
- Input Voltage Synchronous Range : +/-10%
- Rated Frequency : 60 Hz
- Frequency Variation : +/-5%
- Frequency Synchronous Range : +/-1 – 5% (0.6 – 3.0 Hz) Selectable
- Bypass Overload Capacity : 100% for one cycle

4.1.5 AC Output: Configuration

- Configuration : 3-Phase/3-Wire + Ground
- Rated Capacity : 100 kVA (90 kW)
- Rated Voltage : 480 V
- Efficiency at % Full Load :
 - 100 kVA : 92.5% 95.6% 95.6% 95.6% 95.6%
- Voltage Regulation :
 - +/-1% (0-100% Unbalanced Load)
 - +/-1% (0-100% Balanced Load)
- Voltage Adjustment Range : +/-3%
- Rated Frequency : 60 Hz
- Frequency Regulation : +/-0.04% (Free-Running Mode)
- Frequency Slew Rate : +/-1.0 Hz/s to +/-5.0 Hz/s (Selectable)
- Rated Load Power Factor : 0.9 PF lagging
- Overload Capacity (Inverter) : 125% for 2 min.,
PART 5 - FUNCTIONAL DESCRIPTION

The UPS shall protect the load against surges, sags, undervoltage, and voltage fluctuation. The UPS shall have built-in protection against permanent damage to itself and the connected load for all predictable types of malfunctions. The load shall be automatically transferred to the bypass line without interruption in the event of an internal UPS malfunction. The status of protective devices shall be indicated on a LCD graphic display screen on the front of the UPS.

5.1 IGBT Rectifier

5.1.1 General

A solid-state, multi-level IGBT Rectifier shall convert the incoming AC power into DC power to supply the inverter input and system battery.

5.1.2 Voltage Regulation

The rectifier output voltage shall not deviate by more than +/- 1.0% RMS under the following conditions:
- 0% - 100% loading (balanced and unbalanced non-transient loading)
- +15% – 20% utility voltage change
- +/-10.0% utility frequency change

5.1.3 Reflected Harmonic Content

Input current THD shall be:
- 3% maximum at 60%-100% load
- 6% maximum at 25%-59% load.

5.2 IGBT DC-DC Converter
5.2.1 General

A solid-state IGBT Battery Converter/Charger shall control battery charging.

5.2.2 Battery Charge Current Limit

The Converter logic shall provide DC for controlled battery charging. The battery current sensing shall be independent of the Converter DC Output current sensing to provide precise battery recharging control. The DC/DC Charging Converter shall include a circuit to regulate the battery charging current to between 100% and 125% of maximum battery charging current.

5.2.3 Battery Protection

The converter shall be provided with monitoring and control circuits to protect the battery system from damage due to excessive discharge. Converter shutdown shall be initiated when the battery voltage reaches a discharge cutoff voltage of 400 VDC. Automatic shutdown based on discharge time is not acceptable.

5.2.4 DC Ripple (Without batteries)

AC Ripple on the DC Bus shall be less than 0.2%.
AC Ripple on the Battery charging circuit shall be less than 0.23% for the 80/100/160 kVA UPS, and less than 0.29% for the 225 kVA UPS.

5.3 IGBT Inverter:

5.3.1 General

The inverter shall be composed of multi-level IGBT power transistors controlled utilizing an Advanced Technology PWM logic. The Inverter shall continuously convert DC power from the IGBT Rectifier to AC power for the critical loads. When the utility voltage or frequency exceeds the specified UPS input tolerances, the inverter shall continuously convert DC power from the battery source to AC power for the critical load.

The inverter shall be capable of providing rated output while operating at any battery voltage within the battery operating range. When the DC battery voltage reaches the operational low voltage limit during a loss of utility AC power, the inverter shall automatically shut off.

5.3.2 Output Voltage

The Inverter output voltage shall not deviate by more than +/- 1.0% RMS under the following steady state conditions as the Inverter DC input voltage varies from maximum to cutoff:
5.3.3 Synchronization

The Inverter output voltage shall be automatically synchronized with the bypass AC source as long as the source is within the tolerable frequency and voltage range. If the bypass AC source is not within the range, the control circuitry will stop synchronization and operate the inverter in free running mode. When the bypass AC source recovers to within tolerance, the inverter shall change its frequency (slew rate 1 to 5 Hz/sec, selectable) and track the bypass AC source until synchronization is achieved without causing any disturbance to the load.

5.3.4 Output Control

The Inverter can be manually started and stopped using the LCD touch screen controls.

5.3.5 Overload Capacity:

The Inverter output shall be capable of providing an overload current of 125% for 2 min. and 150% for 1 min. A message on the control panel shall indicate this condition. If the time limit associated with the overload condition expires, or the overload is in excess of the set current limit, the load power shall transfer to the bypass source without interruption.

5.4 Static Bypass Circuit:

5.4.1 General:

An integral static bypass circuit shall be provided to supply an alternate source of power to the critical load in the event the inverter cannot supply rated output power. The bypass circuit shall be capable of supplying the UPS rated load current and accommodate fault clearing.

The 100% duty rated static bypass panel shall be composed of a thyristor switch with a wrap-around contactor. The thyristor switch shall be a high-speed transfer device. The wrap-around contactor shall be electrically connected in parallel to the thyristor switch and shall, at the same time as the thyristor switch, be energized and, upon closure, maintain the bypass source to the load to improve the efficiency and reliability of the system. The thyristor switch shall only be utilized for the time needed to energize the contactor closure.

The UPS system logic shall employ sensing which shall cause the thyristor switch to energize and provide an uninterrupted transfer of the load to the bypass source when any of the following limitations are exceeded:
• Inverter output undervoltage or overvoltage.
• Overloads exceeding 125% for 2 min., or 150% for 1 min. DC circuit undervoltage or overvoltage.
• Final discharge voltage of system battery is reached and the bypass source is present, available, and within tolerance range

Transferring the output from the inverter to the bypass source and vice versa shall be performed by pressing “START/STOP” icon on the touchscreen display.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Transfer mode</th>
<th>Transfer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Synchronized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unsynchronized</td>
</tr>
<tr>
<td>Automatic</td>
<td>Inverter to Bypass (Overload, Internal Fault)</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td>“BYPASS” switch operated</td>
<td>Inverter to Bypass</td>
<td>Interrupted</td>
</tr>
<tr>
<td>Automatic</td>
<td>Bypass to Inverter (Auto-Retransfer Mode)</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td>“UPS” switch operated</td>
<td>Bypass to Inverter</td>
<td>Transfer inhibited</td>
</tr>
</tbody>
</table>

If the bypass source is beyond the conditions stated below, interrupted transfer shall be made upon detection of a fault condition.
• Bypass voltage greater than + 10%, -10% from the UPS rated output voltage.
• Bypass frequency exceeds ±3 Hz from the UPS rated output frequency.

5.4.2 Overload Capacity in Bypass:
• Continuous duty : 125% of the system rated capacity
• Overload duty : 1000% of ampere rating for 1 cycle.

5.4.3 Retry function:

When an internal warning/failure has been detected, power flow shall automatically switch from the main circuit (inverter) to the bypass circuit without interruption to the load. If the internal warning is cleared, UPS shall automatically switch the power flow from the bypass circuit to the main circuit (inverter) without interruption.

5.5 Metering, Monitoring, Alarms, and Controls

5.5.1 Status Indicators

The Front Panel shall include LED status indicators for the following states:
5.5.2 EPO (Emergency Power Off) Button

The Front Panel shall have an Emergency Power Off button (EPO) located on the front panel that, when pressed, will shut down the UPS.

5.5.3 Liquid Crystal Display (LCD) Touch Panel

The Front Panel shall include a LCD touch panel that shall provide performance data, statistics, and operating conditions. The following metering will be displayed on LCD touch panel:
- AC Input Voltage
- AC Input Frequency
- AC Output Voltage
- AC Output Current
- AC Output Frequency
- Battery DC Voltage
- Battery DC Current
- AC Bypass Voltage
- AC Bypass Frequency

5.5.4 Mimic Panel

A one-line diagram of the system shall be displayed on the touch panel display panel to provide a visual status of contactors within UPS. The panel shall display the followings:
- AC Input, DC Input
- Rectifier in Operation
- Inverter in Operation
- UPS/Bypass supply
- Battery Operating Condition (float charge/discharge)
- Fault, Warning
- Operation Guidance (LCD Display)
- Fault Guidance (LCD Display)

5.5.5 Isolated Control Signals

Ten (10) Normally Open isolated annunciation signal outputs for remote use will be furnished. Eight (8) alarms shall be user programmable, and shall be factory default set as follows
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 100kVA/90KW UPS Unit

Summary Alarm
Output 1: Load on Bypass
Output 2: Load on Inverter
Output 3: Battery Operation
Output 4: Rectifier Operation
Output 5: Battery Low Voltage
Output 6: Overload
Output 7: Spare
Output 8: Total alarm
Output Contactor Closed

Contact rating:
Output: 1 A @ 30 VDC.
Input: 24 VDC

UPS module accepts remote switches to initiate the following remote operations.
These contacts shall be field supplied):
Remote Start
Remote Stop
Battery Temperature High
Power Demand
Remote Emergency Power Off (EPO)

Contact rating:
Input: 24 VDC

The contact signal inputs and outputs shall be wired to a terminal block located inside the UPS.

PART 6 - MECHANICAL DESIGN

6.1 UPS Enclosure Sections

The UPS shall be a freestanding NEMA1 enclosure equipped with a leveling channel base. The enclosure shall include provisions for hoisting, jacking, and forklift handling.

6.2 The seismic structural mounting requirements (welded or bolted) shall be detailed for each/all cabinet modules.

6.3 Cable Access

Cable access to the UPS shall be
- Bottom entry
- Side entry when using optional side cabinet
- Top entry when using optional side cabinet
PART 7 - WARRANTY

7.1 UPS Warranty

The UPS system shall come with a comprehensive two year on-site warranty on all mechanical, electrical, electronic components. Parts, labor, freight and travel are included during warranty period.

7.2 UPS Battery Warranty

The battery system shall come with a full two-year warranty with 3 year’s prorata total of five years. Parts, labor, and travel are included during warranty period.

7.3 Warranty Support Availability

Typical on-site response time shall be 4 hours (24 hours maximum).

7.4 UPS Service Agreement

UPS Preferred Vendor status has already been determined by the Owner. And, thus in addition to warranty requirements listed herein, additional warranty and service requirements shall apply.

PART 8 - BATTERY CABINETS

The UPS manufacturer will provide TWO T90-10K007EN-VC matching battery cabinets with DC breaker.

PART 9 - COMMUNICATIONS

9.1 RemotEye II Network Adapter

The UPS shall provide either an internal or external support for an internet web/SNMP adapter RemotEye II. for the optional capability of remote or internet system monitoring.

9.1.1 SNMP Ability

RemotEye II shall provide a SNMP interface for the UPS. The SNMP interface shall provide for easy integration of UPS management into an existing SNMP Network Management System. At any given time, SNMP queries shall be able to poll the RemotEye II agent for the current status of its connected UPS.
9.1.2 HTTP Familiarity

The RemotEye II shall provide a HTTP interface for the UPS to allow easy access of the UPS information from any machine with a web browser. At any time, a network workstation or management station shall be able to open a RemotEye II website. RemotEye II website shall enable the UPS system information to be configured and monitored remotely. RemotEye II shall provide access to 3 java applets for monitoring, event logging, and trend analysis.

9.1.3 Shutdown Capability

The RemotEye II application software shall allow RemotEye II to remotely notify and shutdown selected network servers.

<table>
<thead>
<tr>
<th>Network Adapter/External Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD 188ES-20MHz</td>
</tr>
<tr>
<td>512kB SRAM: 512kB Flash</td>
</tr>
<tr>
<td>Two asynchronous serial ports</td>
</tr>
<tr>
<td>10 BaseT RJ-45 connector</td>
</tr>
<tr>
<td>Manufacturer’s UPS communication protocol</td>
</tr>
<tr>
<td>SNMP over UDP/IP : HTTP over TCP/IP:ARP, RARP, TFTP and ICMP</td>
</tr>
<tr>
<td>MIB _II : Manufacturer v1.2_MIB :JEM MIB : RFC 1628</td>
</tr>
<tr>
<td>Traffic LED for network : Status LED for status : Power LED for Power</td>
</tr>
<tr>
<td>2 digit (default setting is Switches 1 and 2 off)</td>
</tr>
<tr>
<td>Temperature Range: 0 – 40 °C</td>
</tr>
<tr>
<td>Relative Humidity: 10 – 80 %</td>
</tr>
<tr>
<td>Power Requirements: 12 VDC ungrounded</td>
</tr>
<tr>
<td>2.0 Watts Maximum</td>
</tr>
<tr>
<td>Dimensions: 5.28”(134mm) x 3.40”(86mm) x 1.10”(27mm) (LxWxH)</td>
</tr>
<tr>
<td>Weight: 0.38lbs(170g)</td>
</tr>
</tbody>
</table>

PART 10 – NOT USED

PART 11 - MAINTENANCE BYPASS PANEL

The manufacturer can optionally provide a MBS (Maintenance Bypass Panel) for the UPS.
11.1 Site Installation
The MBS can be available in a floor mount cabinet configuration.

11.2 Electrical Configuration
The MBS can be available in two, three, or four breaker configurations.

11.3 Mechanical Interlock
The MBS can have the option for a two-kirk-key interlock system.

11.4 External Maintenance Bypass:
- A manually operated maintenance bypass panel can be provided to bypass the power feeding the critical load from inverter to a static switch panel without causing any power interruption.
- Bypass input breaker can supply input power to the UPS module static bypass input. If the system design calls for separate UPS and bypass inputs, a bypass input breaker can be installed on each input.
- UPS maintenance bypass breaker can allow power flow to the load when the UPS is bypassed. This can be a normally open circuit breaker.
- The UPS module output can feed the UPS output isolation breaker.
- Optionally, the two input bypass breaker can be used to feed both the UPS converter input and the UPS bypass input.

PART 12 – NOT USED

PART 13 – NOT USED

PART 14 - EXTENDED SERVICES

The UPS supplier resource may offer:
- Startup Service
- Maintenance Contracts
- Preventive Maintenance Contracts
- Spare-parts kits
- Extended warranty coverage for up to an additional 2 years
- Enhanced warranty contract (24/7 + Holiday coverage)
- Load bank testing by Contractor
- Factory witness testing
- Site monitor and power audits

PART 15 – DOCUMENT TRANSMITTALS AND DATA HANDLING
15.1 ACTION SUBMITTALS

15.1.1 Product Data: For each type of product indicated. Include data on features, components, electrical duration ratings, and performance.

15.1.2 Shop Drawings: For UPS. Include plans, elevations, sections, details, and attachments to other work.
- Detail equipment assemblies and indicate dimensions, weights, components, and location and identification of each field connection. Show operations and termination access, workspace, and clearance requirements; details of control display panels; and battery arrangement.
- Wiring Diagrams: For power, signal, and control wiring. (one-line with all secondary and monitoring circuit equipment details).
- Provide heat resection rate data. (consider a 73°F +/- 3°F enclosure space).
- Provide wet cell storage battery hydrogen evolution into a closed space. State ventilation requirement data. (consider a 73°F +/- 3°F environment).

15.2 INFORMATIONAL SUBMITTALS

15.2.1 Qualification Data: For qualified testing agency provide the test QA results data.

15.2.2 Seismic Qualification Certificates: For UPS equipment, from manufacturer.
- Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
- Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
- Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

15.2.3 Manufacturer Certificates: For each product, from manufacturer.

15.2.4 Factory Test Reports: Comply with specified requirements.

15.2.5 Field quality-control reports.

15.2.6 Performance Test Reports: Indicate test results compared with specified performance requirements, and provide justification and resolution of differences if values do not agree.

15.2.7 Warranties: Sample of special warranties.
15.3 CLOSEOUT SUBMITTALS

15.3.1 Operation and Maintenance Data: For UPS units to include in emergency, operation, and systems maintenance manuals.

15.4 MAINTENANCE MATERIAL SUBMITTALS

15.4.1 Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Fuses: Three each for each type and rating.
 - Cabinet Ventilation Filters: Two complete set(s).

15.5 QUALITY ASSURANCE

15.5.1 Power Quality Specialist Qualifications: A registered professional electrical engineer or engineering technician, currently certified by the National Institute for Certification in Engineering Technologies, NICET Level 4, minimum, experienced in performance testing UPS installations and in performing power quality surveys similar to that required in "Performance Testing" Article.

15.5.2 Testing Agency Qualifications: Member company of NETA or an NRTL.
 - Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

15.5.3 Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

15.5.4 UL Compliance: Listed and labeled under UL 1778 by an NRTL.

15.5.5 NFPA Compliance: Mark UPS components as suitable for installation in computer rooms according to NFPA 75.

PART 16 – QUALITY PROGRAM INSTALLATION AND TESTING RESULTS REQUIREMENTS

16.1 BATTERY QUALITY CONTROL

16.1.1 Factory test complete UPS system before shipment. Use actual batteries that are part of final installation battery testing. Include the following:
 - Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
 - Full-load test.
16.1.2 Observation of Test: Give 14 days' advance notice of tests and provide opportunity for Owner's representative to observe tests at Owner's choice. WSU site test demonstrations shall be conducted during the Monday through Friday normal work week between 0830-1700 hours. WSU will observe testing. The seller shall submit the QA program test plan for WSU acceptance.

16.1.3 Report test results. Include the following data:
• Description of input source and output loads used. Describe actions required to simulate source load variation and various operating conditions and malfunctions.
• List of indications, parameter values, and system responses considered satisfactory for each test action. Include tabulation of actual observations during test.
• List of instruments and equipment used in factory tests.

16.2 FIELD QUALITY CONTROL

16.2.1 Testing Agency: Engage a qualified testing agency to perform tests and inspections.

16.2.2 Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

16.2.3 Perform tests and inspections.
• Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

16.2.4 Tests and Inspections:
• Comply with manufacturer's written instructions.
• Inspect interiors of enclosures, including the following:
 o Integrity of mechanical and electrical connections.
 o Component type and labeling verification.
 o Ratings of installed components.
• Inspect batteries and chargers according to requirements in NETA Acceptance Testing Specifications.
• Test manual and automatic operational features and system protective and
alarm functions.

- Test communication of status and alarms to remote monitoring equipment.
- Load the system using a variable-load bank to simulate kilovolt amperes, kilowatts, and power factor of loads for the UPS unit's rating. Use instruments calibrated within the previous six months according to NIST standards.
 - Simulate malfunctions to verify protective device operation.
 - Test duration of supply on emergency, low-battery voltage shutdown, and transfers and restoration due to normal source failure.
 - Test harmonic content of input and output current less than 25, 50, and 100 percent of rated loads.
 - Test output voltage under specified transient-load conditions.
 - Test efficiency at 50, 75, and 100 percent of rated loads.
 - Test remote status and alarm panel functions.
 - Test battery-monitoring system functions.

16.2.5 Seismic-restraint tests and inspections shall include the following:

- Inspect type, size, quantity, arrangement, and proper installation of mounting or anchorage devices.
- Test mounting and anchorage devices according to requirements in Section 260548.16 "Seismic Controls for Electrical Systems."

16.2.6 The UPS system will be considered defective if it does not pass tests and inspections.

16.2.7 Record of Tests and Inspections: Maintain and submit documentation of tests and inspections, including references to manufacturers' written instructions and other test and inspection criteria. Include results of tests, inspections, and retests.

16.2.8 Prepare test and inspection reports.

16.3 PERFORMANCE TESTING

16.3.1 Engage the services of a qualified power quality specialist to perform tests and activities indicated for each UPS system.

16.3.2 Monitoring and Testing Schedule: Perform monitoring and testing in a single 10-day period scheduled for the: 100 KVA/90 KW Chemistry Building,
• Schedule monitoring and testing activity with Owner, through Architect, with at least 14 days' advance notice.
• Schedule monitoring and testing after Substantial Completion, when the UPS is supplying power to its intended load.

16.3.3 Monitoring and Testing Instruments: Three-phase, recording, power monitors. Instruments shall provide continuous simultaneous monitoring of electrical parameters at UPS input terminals and at input terminals of loads served by the UPS. Instruments shall monitor, measure, and graph voltage current and frequency simultaneously and provide full-graphic recordings of the values of those parameters before and during power-line disturbances that cause the values to deviate from normal beyond the adjustable threshold values. Instruments shall be capable of recording either on paper or on magnetic media and have a minimum accuracy of plus or minus 2 percent for electrical parameters. Parameters to be monitored include the following:
• Current: Each phase and neutral and grounding conductors.
• Voltage: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
• Frequency transients.
• Voltage swells and sags.
• Voltage Impulses: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
• High-frequency noise.
• Radio-frequency interference.
• THD of the above currents and voltages.
• Harmonic content of currents and voltages above.

16.3.4 Monitoring and Testing Procedures[for Each Test Period]:
• Exploratory Period: For the first [two] <Insert number> days[of the first scheduled monitoring and testing period], make recordings at various circuit locations and with various parameter-threshold and sampling-interval settings. Make these measurements with the objective of identifying optimum UPS, power system, load, and instrumentation setup conditions for subsequent test and monitoring operations.
• Remainder of Test Period: Perform continuous monitoring of at least two circuit locations selected on the basis of data obtained during exploratory period.
 o Set thresholds and sampling intervals for recording data at values selected to optimize data on performance of the UPS for values indicated, and to highlight the need to adjust, repair, or modify the UPS, distribution system, or load component that may influence its performance or that may require better power quality.
 o Perform load and UPS power source switching and operate
the UPS on generator power during portions of test period according to directions of Owner's power quality specialist.

- Operate the UPS and its loads in each mode of operation permitted by UPS controls and by the power distribution system design.
- Using loads and devices available as part of the facility's installed systems and equipment[and a temporarily connected portable generator set], create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.
- Using temporarily connected resistive/inductive load banks, create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.
- Make adjustments and repairs to UPS, distribution, and load equipment to correct deficiencies disclosed by monitoring and testing and repeat appropriate monitoring and testing to verify success of corrective action.

16.3.5 Coordination with Specified UPS Monitoring Functions: Obtain printouts of built-in monitoring functions specified for the UPS and its components in this Section that are simultaneously recorded with portable instruments in this article.

- Provide the temporary use of an appropriate PC and printer equipped with required connections and software for recording and printing if such units are not available on-site.
- Coordinate printouts with recordings for monitoring performed according to this article, and resolve and report any anomalies in and discrepancies between the two sets of records.

16.3.6 Monitoring and Testing Assistance by Contractor:

- Open UPS and electrical distribution and load equipment and wiring enclosures to make monitoring and testing points accessible for temporary monitoring probe and sensor placement and removal as requested.
- Observe monitoring and testing operations; ensure that UPS and distribution and load equipment warranties are not compromised.
- Perform switching and control of various UPS units, electrical distribution systems, and load components as directed by power quality specialist. Specialist shall design this portion of monitoring and testing operations to
expose the UPS to various operating environments, conditions, and events while response is observed, electrical parameters are monitored, and system and equipment deficiencies are identified.

- Make repairs and adjustments to the UPS and to electrical distribution system and load components, and retest and repeat monitoring as needed to verify validity of results and correction of deficiencies.
- Engage the services of the UPS manufacturer's factory-authorized service representative periodically during performance testing operations for repairs, adjustments, and consultations.

16.3.7 Documentation: Record test point and sensor locations, instrument settings, and circuit and load conditions for each monitoring summary and power disturbance recording. Coordinate simultaneous recordings made on UPS input and load circuits.

16.3.8 Analysis of Recorded Data and Report: Review and analyze test observations and recorded data and submit a detailed written report. Include the following in each report:
- Description of corrective actions performed during monitoring and survey work and their results.
- Recommendations for further action to provide optimum performance by the UPS and appropriate power quality for non-UPS loads. Include a statement of priority ranking and a cost estimate for each recommendation that involves system or equipment revisions.
- Copies of monitoring summary graphics and graphics illustrating harmonic content of significant voltages and currents.
- Copies of graphics of power disturbance recordings that illustrate findings, conclusions, and recommendations.
- Recommendations for operating, adjusting, or revising UPS controls.
- Recommendation for alterations to the UPS installation.
- Recommendations for adjusting or revising generator-set or automatic transfer switch installations or their controls.
- Recommendations for power distribution system revisions.
- Recommendations for adjusting or revising electrical loads, their connections, or controls.

16.3.9 Interim and Final Reports: Provide an interim report at the end of each test period and a final comprehensive report at the end of final test and analysis period.

16.4 DEMONSTRATION

16.4.1 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the UPS.
I. State model number data: each cabinet, (include dimensions and weight data)
 a. UPS 100 kVA/90 kW power Electronics cabinet: T90S3S10KS6XSN
 b. Battery Storage Cabinet: T90-10K007EN-VC
 c. Maintenance Bypass Switch Cabinet: T90BMSS10K-S3KK
 d. Remote Communication Module Features: RMTI-EXT-R4
 e. UPSTARTUP100G9 Services

II. Input Power Parameter Data:

<table>
<thead>
<tr>
<th>Voltage/Wiring Features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Range/Variation</td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td></td>
</tr>
<tr>
<td>Current THD Harmonics</td>
<td></td>
</tr>
<tr>
<td>Frequency/Variation</td>
<td></td>
</tr>
</tbody>
</table>

Output Power Parameter Data:

<table>
<thead>
<tr>
<th>Voltage/Wiring Features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency/Variation</td>
<td></td>
</tr>
<tr>
<td>Voltage Regulation</td>
<td></td>
</tr>
<tr>
<td>Power Factor: LAG</td>
<td></td>
</tr>
<tr>
<td>Voltage THD</td>
<td></td>
</tr>
<tr>
<td>Overload, Inverter 120sec/60sec</td>
<td></td>
</tr>
<tr>
<td>Overload, Bypass</td>
<td></td>
</tr>
</tbody>
</table>

III. State environment operating parameter requirements:
 - Temperature
 - Humidity
 - Noise
 - Heat rejection
 - Efficiency ratings data
 - Seismic
IV. System Topology: State UPS Description Data: ________________________________

V. State UPS battery features and operation life features.

VI. State UPS monitoring, alarm, control interface switch features and signal handling provision.

VII. State UPS international and national standards compliance adherence data (e.g: UL ISO ANSI IEEE, other NFPA-NEC)

VIII. State UPS warranty duration and features.

END OF SECTION 263353
609 - CS MOTT BUILDING
WSU PROJECT NO. 609-248861
ELECTRICAL RELIABILITY UPGRADES
BID PACKAGE NO. 6

Project Specifications

Prepared for:
Wayne State University

For Bids
1/21/2015

Prepared by
Commonwealth associates, Inc.
CS Mott Building

Building No. 609
275 E. Hancock Dr.
Detroit, MI 48201

Drawing List

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Sheet Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes & Design Criteria</td>
</tr>
<tr>
<td>E-0</td>
<td>Basement Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-3</td>
<td>Third Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
<tr>
<td>AR1-02A (Reference)</td>
<td>Second Floor Reflected Ceiling Plan Area ‘A’</td>
</tr>
<tr>
<td>AR1-02B (Reference)</td>
<td>Second Floor Reflected Ceiling Plan Area ‘B’</td>
</tr>
<tr>
<td>AR1-03A (Reference)</td>
<td>Third Floor Reflected Ceiling Plan Area ‘A’</td>
</tr>
<tr>
<td>AR1-0GA (Reference)</td>
<td>Ground Floor Reflected Ceiling Plan Area ‘A’</td>
</tr>
<tr>
<td>AR1-0GB (Reference)</td>
<td>Ground Floor Reflected Ceiling Plan Area ‘B’</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Section No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>012100</td>
</tr>
<tr>
<td>017823</td>
</tr>
</tbody>
</table>

Table of Contents

<table>
<thead>
<tr>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1 – General Requirements</td>
</tr>
<tr>
<td>Allowances</td>
</tr>
<tr>
<td>Operation and Maintenance Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division 3 – Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Formwork</td>
</tr>
<tr>
<td>Cast in Place Concrete</td>
</tr>
</tbody>
</table>
Wayne State University
CS Mott Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

Division 5 – Metals

050940
Post Installed Anchors

Division 7 – Thermal and Moisture Protection

078413
Penetration Firestopping

Division 9 – Finishes

099100
Painting

Division 26 – Electrical

260510
Electrical Design and Equipment

260519
Low-Voltage Electrical Power Conductors and Cables

260526
Grounding and Bonding for Electrical Systems

260529
Hangers and Supports for Electrical Systems

260533
Raceways and Boxes for Electrical Systems

260544
Sleeves and Sleeve Seals for Electrical Raceways and Cabling

260553
Identification for Electrical Systems

262200
Low-Voltage Transformers

262416
Panelboards

262726
Wiring Devices

262813
Fuses
Wayne State University
CS Mott Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

262816 Enclosed Switches and Circuit Breakers

263353 Static Three Phase Uninterruptible Power Supply
SECTION 012100 - ALLOWANCES

PART 1 - GENERAL

1.1 SUMMARY

A. Selected labor are shown and specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual labor to a later date.

1. Cash Allowances: Base bid shall include an allowance to cover costs associated with premium time associated with overtime work in amount of $5,000.00. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

B. Type of allowance is "Lump-sum" cash allowance.

1.4 SUBMITTALS

A. Submit in writing to the WSU Rep in advance allocation of expected monies required to perform pre-approved work.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 – EXECUTION (NOT APPLICABLE)

3.1 SCHEDULE OF CASH ALLOWANCES

END OF SECTION 012100
OPERATION AND MAINTENANCE DATA

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:

1. Operation and maintenance documentation directory.
2. Emergency manuals.
3. Operation manuals for systems, subsystems, and equipment.
4. Product maintenance manuals.
5. Systems and equipment maintenance manuals.

1.3 DEFINITIONS

A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.

B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.

1. WSU representative will comment on whether content of operations and maintenance submittals are acceptable.
2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

B. Format: Submit operations and maintenance manuals in the following format:

 a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
b. Enable inserted reviewer comments on draft submittals.

2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Architect, through Construction Manager, will return two copies.

C. Initial Manual Submittal: Submit draft copy of each manual at least 30 days before commencing demonstration and training. Architect and Commissioning Authority will comment on whether general scope and content of manual are acceptable.

D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect and Commissioning Authority will return copy with comments.

1. Correct or revise each manual to comply with Architect's and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's and Commissioning Authority's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents.
OPERATION AND MAINTENANCE DATA

2.2 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name and contact information for Contractor.
6. Name and contact information for Construction Manager.
7. Name and contact information for Architect.
8. Name and contact information for Commissioning Authority.
9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
10. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.

1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
OPERATION AND MAINTENANCE DATA

F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.

 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.

 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.

 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.

 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.

 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.

 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:

 1. Type of emergency.
 2. Emergency instructions.
 3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:

 1. Fire.
 2. Flood.
 5. Power failure.
 7. System, subsystem, or equipment failure.
8. Chemical release or spill.

C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:

1. Instructions on stopping.
2. Shutdown instructions for each type of emergency.
3. Operating instructions for conditions outside normal operating limits.
4. Required sequences for electric or electronic systems.
5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

2. Performance and design criteria if Contractor has delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:

1. Inspection procedures.
2. Types of cleaning agents to be used and methods of cleaning.
3. List of cleaning agents and methods of cleaning detrimental to product.
4. Schedule for routine cleaning and maintenance.
5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers’ maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual’s table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Manufacturers’ Maintenance Documentation: Manufacturers’ maintenance documentation including the following information for each component part or piece of equipment:

1. Standard maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 1. Do not use original project record documents as part of operation and maintenance manuals.
 2. Comply with requirements of newly prepared record Drawings in Section 017839 "Project Record Documents."

END OF SECTION 017823
SECTION 031000 – CONCRETE FORMWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the design, installation and removal of forms for cast-in-place concrete.

B. Related Sections include the following:
 1. Division 3 Section “Cast-In-Place Concrete.”

C. Division of Work:
 1. In accordance with the General Conditions, Contractor is responsible for dividing the Work among the Subcontractors and Suppliers and for delineating the work to be performed by specific trades. The following are suggestions as to how the Work may be divided. This is not a complete list of all the work:
 a. Mechanical, Electrical and Plumbing Trades: Supply, locate and install premanufactured items including inserts, sleeves, and other embedded items required by those respective trades.
 b. Contractor: Coordinate location of mechanical, electrical and plumbing inserts, embedded parts, openings and recesses with respective trades.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following:
 1. ACI - American Concrete Institute:
 b. 301 - Standard Specifications for Structural Concrete for Buildings.
 c. 347R - Guide to Formwork for Concrete.

1.4 DESIGN AND PERFORMANCE REQUIREMENTS

A. Form Construction:
 1. Provide required forms, shores, bracing, breast timbers, form ties, and accessories in sufficient quantities so as not to delay the Work, and of strength to support vertical and horizontal loads to which they are subjected.
 2. Deflection: Maximum deflection of forms shall be 1/240 of span or 1/4-inch, whichever is less.

1.5 SUBMITTALS

A. Manufacturer's Literature: For form release agent.
1.6 QUALITY ASSURANCE

A. Design: The design and engineering of formwork, as well as its construction, shall be the responsibility of Contractor.

B. Notifications: Notify special inspector at least 24 hours in advance of placing concrete.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Formwork Facing Materials:
 1. Smooth Form Finish Areas:
 a. Locations: All locations unless otherwise noted.
 b. The form facing material shall produce a smooth, hard, uniform surface on the concrete.
 c. Form facing materials may be plywood, tempered concrete-form-grade hardboard, metal, plastic, paper; or other approved material capable of producing the desired finish.
 d. Facing materials shall be supported by studs or other backing capable of preventing deflections in excess of those specified herein.
 e. Material with damaged surfaces, worn edges, patches, dents or other defects which will impair the texture of the concrete surface shall not be used.

B. Chamfer Strips:
 1. Wood, metal, rubber, or PVC.
 2. Sizes as indicated, 3/4-inch x 3/4-inch minimum.

C. Form Release Agent:
 1. Products for General Use: Magic Kote by Symons, Crete-lease 727 by Cresset Company; or equal.
 2. Chemically neutral agent in hydrocarbon solvent that will effectively prevent absorption of moisture and prevent bond with the concrete.

PART 3 - EXECUTION

3.1 FORMWORK CONSTRUCTION

A. General:
 1. Align and secure joints to avoid offsets.
 2. Provide chamfered strips in exposed corners of exterior corners, internal corners and for similar conditions throughout the Work.
 3. The arrangement of facing material shall be orderly and symmetrical with the number of seams kept to the practical minimum.
 4. Retighten forms after concrete placement if required to eliminate mortar leaks.
 a. Securely brace temporary openings and set tightly to forms to prevent loss of concrete mortar.
 b. Locate temporary openings on forms at inconspicuous locations.
CONCRETE FORMWORK

B. Openings and Embedded Items:
 1. Set and build into the work anchorage devices and other embedded items required for work that is attached to, or supported by, cast-in-place concrete.
 2. Coordinate work of other Sections and cooperate with trade involved in forming and setting openings, slots, recesses, chases, sleeves, bolts, anchor and other inserts.
 3. Use setting drawings, diagrams, instructions and directions provided by Suppliers of the respective items.
 4. Do not perform work unless specifically indicated on Drawings or reviewed prior to installation.

C. Cleaning:
 1. Clean forms as erection proceeds, to remove foreign matter.
 2. Remove cuttings, shavings and debris from within forms.
 3. Flush with water or use compressed air to remove remaining foreign matter.
 4. Ensure that water and debris drain to exterior through clean-out ports.
 5. When forms are extended for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close joints.
 6. Thoroughly clean embedded waterstops and concrete surfaces prior to constructing forms for the next pour.

D. Applying Form Release Agent:
 1. Temperature of release agent and surfaces to which it is applied shall be a minimum of 70 degrees F.
 2. Apply by spray only.
 3. Uniformly coat surfaces with a thin film.
 4. Wipe off excess with clean towels.
 5. Apply in accordance with Manufacturer's recommendations.
 6. Do not allow to stand in puddles in the forms and prevent bonding of concrete at construction joints.

E. Provisions for Form Removal:
 1. Fabricate forms for easy removal without hammering or prying against the concrete surfaces.
 2. Kerf wood inserts for forming keyways, reglets, recesses and the like to prevent swelling and for easy removal.

3.2 FORM AND SUPPORT REMOVAL

A. Forms and supports shall remain in place for not less than the following periods of time:
 1. Housekeeping Pad: 12 to 24 hours.

B. In any event, do not remove forms and supports until concrete in walls has reached 30% of design strength, and in structural members and slabs has reached 75% of design strength.

C. Special precautions shall be taken when concrete is placed in average temperatures of 50 degrees F or below to ensure that forms are not removed before design strengths specified above are met.

D. Remove forms in such a manner and at such times as required to ensure safety of persons involved and so as to protect and maintain structural integrity of members.
E. Particular care shall be taken in removing forms to minimize damage to concrete surfaces; use crush or wrecking plates as necessary.

F. Whenever the formwork is removed, cure the exposed concrete as specified under Division 3 Section “Cast-in-Place Concrete.”

3.3 FIELD QUALITY CONTROL

A. Inspect and check completed formwork, shoring and bracing to ensure that work is in accordance with formwork design, and that supports, fastenings, wedges, ties and parts are secure.

B. Form Surface Repairs:
 1. Repair surfaces of forms to be reused in the work.
 2. Split, frayed, delaminated or otherwise damaged form facing material will not be acceptable.
 3. Apply new form release agent to new concrete contact form surfaces.
 4. Do not use patched forms for exposed concrete surfaces.

END OF SECTION 031000
SECTION 033000 – CAST IN PLACE CONCRETE

PART 1 – GENERAL

1.1 SUMMARY

A. Work Included: Cast in place concrete.
 1. Housekeeping pads.

1.2 QUALITY ASSURANCE

REFERENCE STANDARDS

A. Comply with the latest editions of the following design guides and standards:
 1. ACI 301 “Specifications for Structural Concrete for Buildings”
 2. ACI 302 “Guide for Concrete Floor and Slab Construction”
 3. ACI 304 “Recommended Practice for Measuring, Mixing, Transporting, and Placing
 Concrete:”
 4. ACI 315 “Details and Detailing of concrete Reinforcement”
 5. ACI 318 “Building Code Requirements for Structural Concrete”
 6. ACI 347 “Recommended Practice for Concrete Formwork”

1.3 SUBMITTALS

A. Shop Drawings: Submit Shop Drawings for fabrication, bending, and placement of concrete
 reinforcement. Show bar bending schedules, stirrup spacing, diagrams of bent bars, and
 arrangements of concrete reinforcement.

B. Mix Designs: Submit proposed mix designs for concrete at least 15 days before start of
 concreting. Submittal shall include: cement content and type, admixture content and type,
 aggregate source and gradation, water content, air content, slump, yield, and documentation of
 average strength by field experience method or laboratory prepared trial mixtures in accordance
 with ACI 318 Article 4.3.

C. Product Data: Submit data and installation instructions for proprietary materials.

D. Material Certificates: Submit materials certificates certifying that each material complies with
 Specifications.

1.4 TESTING SERVICES

A. Owner will engage a testing laboratory acceptable to the Architect-Engineer to perform material
 evaluation tests and for quality control during placement.
B. Sample and test concrete for quality control during placement as follows:
 1. Compressive Strength Test: ASTM C39, one set of six cylinders for each 50 cubic yards or fraction thereof, of each concrete class placed in any one day, two lab specimens tested at 7 days, two lab specimens tested at 28 days and two specimens retained in reserve for later testing if required.

C. Test Reports
 1. Forward results to Architect-Engineer and Contractor on same day that tests are made.
 2. Reports of compressive strength tests shall contain the general information of project identification name and number, date of concrete placement, name of Contractor, name of concrete supplier, truck number and delivery ticket number, name of concrete testing agency, concrete type and class, name of individual making specimen, location of concrete batch in structure, design compressive strength at 28 days, concrete mix proportions and materials; and the specific information of compressive strength and type of break for both 7-day and 28-day tests.
 3. Field reports of concrete inspection shall contain general information noted above, plus cylinder numbers.

D. Additional Testing
 1. Testing agency shall make additional test of in-place concrete when test results indicate specified concrete strengths and other characteristics have not been attained in the structure.
 2. Testing agency shall conduct tests to determine adequacy of concrete cored cylinders complying with ASTM C42 or by other methods acceptable to Architect-Engineer.
 3. Contractor shall pay for such tests conducted, and any other additional testing required, if concrete testing confirms specified strengths have not been met.

1.5 JOB CONDITIONS

A. Store materials so as to ensure preservation of their quality and fitness for the Work. Store reinforcement and formwork in a manner to prevent damage and accumulation of dirt.

B. Contractor shall be responsible for correction of concrete work which does not conform to specified requirements, including strength, tolerances and finishes. Correct deficient concrete as directed by Architect-Engineer.

PART 2 – PRODUCTS

2.1 MATERIALS

A. Formwork
CAST IN PLACE CONCRETE

1. Exposed Concrete: Unless otherwise shown or specified, construct formwork for concrete surfaces, which will be exposed to view in the completed project, with form plywood, metal or other acceptable panel-type material, to provide continuous, straight, smooth exposed surfaces. Furnish in largest practicable sizes to minimize number of joints and to conform to joint system show on Drawings. Provide form material with sufficient thickness to withstand pressure of newly-placed concrete without bow or deflection.

B. Form Coatings: Commercial formulation form-coating compounds shall not bond with, stain, nor adversely affect concrete surfaces, and shall not impair subsequent treatments of concrete surfaces requiring bond or adhesion, nor impede wetting of surfaces to be cured with water or curing compound.

C. Reinforcement
 1. Deformed bars: ASTM A615, Grade 60.
 3. All chairs, spacers, clips, wire anchors and related items necessary to accurately space and secure reinforcement.
 4. Additional bars, if required, to anchor or space reinforcement.
 5. Chairs shall be plastic booted at points of bearing on forms for exposed concrete.
 6. Minimum 16-gauge annealed tie wire, ASTM A82.

D. Cement: ASTM C150, Type I or Type II.

E. Aggregates: ASTM C33 and as herein specified.
 1. Fine Aggregate: Clean, sharp, natural sand free from loam, clay, lumps or other deleterious substances with less that 10% passing the #100 sieve and less than 3% passing the #200 sieve.
 2. Coarse Aggregate: Clean, uncoated, processed aggregate containing no clay, mud, loam or foreign matter, as follows:
 a. Crushed stone: Processed from natural rock or stone for concrete slabs meeting MDOT 6AA, with a ¾ inch maximum aggregate size.
 b. Clean, sharp, natural or processed gravel, or, crushed stone, free from loam, clay, lumps, or other deleterious substances for footings and miscellaneous concrete.
 c. Maximum aggregate Size: Pads – ¾”.

F. Water: Clean, fresh, and potable.

G. Water Reducing Admixture: ASTM C494, Type A.

H. Non Corrosive, Non Chloride Accelerator: ASTM C494, Type C or E.

I. Prohibited Admixtures: Calcium chloride, thiocyanates. Admixtures containing more than 0.05% chloride ions are not permitted.
J. Evaporation Retarder: Confilm by Master Builders, or accepted equal.

K. Curing Sheet Materials: ASTM C171, including waterproof paper, polyethylene film or polyethylene coated burlap.

L. Liquid Membrane Curing/Sealing Compound: Masterkure by Master Builders or accepted equal.

2.2 PROPORTIONING AND MIX DESIGN

A. Prepare design mixes for concrete. Use independent testing facility acceptable to Architect-Engineer for preparing and reporting proposed mix designs.

B. Where the concrete production facility can establish the uniformity of its production for concrete of similar strength and materials based on recent test data, the average strength used as a basis for determining mix design proportions shall exceed the specified design strength by the requirements of ACI 318, section 4.3.2 or ACI 301, Section 3.9.

C. Concrete Quality

<table>
<thead>
<tr>
<th>Location</th>
<th>Required 28 day Compressive Strength</th>
<th>Maximum Water/Cement Ratio</th>
<th>Air-Content</th>
<th>Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housekeeping Pad</td>
<td>3,000 psi</td>
<td>0.55</td>
<td>-</td>
<td>147 – 153 pcf</td>
</tr>
</tbody>
</table>

D. Slump

1. Housekeeping Pad: 3” to 5”.

E. Ready Mix Concrete: ASTM C94.

F. The quantity of coarse aggregate in pounds must be in the range of 1.25 to 1.5 times the quantity of fine aggregate in pounds.

G. Pumping of concrete is permitted only if mix designs specifically prepared and used previously for pumping are submitted. Pumpline shall have a 5-inch minimum inside diameter and shall be used with 5-inch pumps.
033000

CAST IN PLACE CONCRETE

1.3 REINFORCING FABRICATION

A. Fabricate bars to required lengths, shapes and bends. Do not rebend or straighten reinforcement in a manner that shall weaken the material.

1.4 FORMWORK

A. Design formwork to support vertical and lateral loads that might be applied until such loads can be supported by concrete structure.

PART 3 – EXECUTION

3.1 INSPECTION

A. Examine conditions under which concrete shall be placed. Do not proceed with work until all unsatisfactory conditions are corrected.

3.2 NOTIFICATION

A. Notify Architect-Engineer 24 hours before anticipated time of completion of reinforcement in any section.

B. Do not place concrete until reinforcement has been observed and corrections, if any, made.

3.3 FORMWORK INSTALLATION

A. Erect, brace, and maintain formwork to support vertical and lateral loads.

B. Construct forms to sizes, lines and dimensions shown to obtain accurate alignment, location, grades, level and plumb work in finished structure.

C. Provide for openings, offsets, keys and other features required in work. Accurately position and support items.

D. Solidly butt joints and provide backup at joints to prevent leakage of cement paste.

E. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces.

F. Kerf wood inserts for forming keys and the like to prevent swelling and for easy removal.

G. Provide openings in concrete form to accommodate work of other trades. Determine size and location of openings, recesses and chases from trades providing such.
H. Cleaning and Tightening: Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt or other debris just before concrete is placed. Retighten forms after concrete placement if required to eliminate concrete leaks.

I. Reuse of Forms: Clean and repair surfaces of forms to be reused in the work. Split, frayed, delaminated, or otherwise damaged form facing material is not acceptable. Apply new form coating compound material. When forms are reused for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close all joints. Align and secure joints to avoid offsets.

3.4 REINFORCEMENT PLACING

A. Clean reinforcement of loose rust, mill scale, earth, ice and other materials which reduce or destroy bond with concrete.

B. Accurately position, support and secure reinforcement against displacement by formwork, construction or concrete placement operations. Locate and support reinforcement by metal chairs, runners, bolsters, spacers and hangers as required. Do not use brick.

C. Place reinforcement to obtain at least the minimum coverage’s for concrete protection.

D. Arrange, space and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.

E. Lap bar splices as indicated. Stagger splices in adjacent bars. Wire tie all splices.

3.5 WELDED WIRE FABRIC REINFORCEMENT PLACEMENT

A. Place welded wire fabric one-third of the slab thickness below top surface of slab.

B. Place flat sheets in as long lengths as practical. Lap adjoining sheets at least one full mesh. Offset laps to prevent continuous laps in either direction.

C. Do not continue welded wire fabric through any control joints or construction joints for slabs on grade.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, reinforcing steel and items to be embedded or cast in the concrete.
033000
CAST IN PLACE CONCRETE

B. Notify other trades to permit installation of their work. Cooperate with other trades in setting such work as required.

C. Install anchor bolts and sleeves.

D. Deposit concrete continuously or in layers of such thickness that no concrete shall be placed on concrete which has hardened sufficiently to cause formation of seams or planes of weakness within section. Provide construction joints if section cannot be placed continuously.

E. Deposit concrete as nearly as practicable to its final location to avoid segregation caused by rehandling or flowing.

F. Maximum drop of concrete shall not exceed 5 feet. Use hopper and trunk for greater drops.

G. Contractor shall be responsible for controlling the proper placing of all embedded pipe, conduit and other embedded items.

H. Contractor shall be responsible for finishing of all concrete slabs to proper elevations to insure that all surface moisture will drain freely to floor drain, and that no puddle areas exist. During finishing operation, Contractor shall pay particular attention to this criterion, and shall make all efforts to obtain this. Any cost of corrections to provide for this positive drainage will be the responsibility of Contractor.

3.7 CONSOLIDATION

A. Consolidate placed concrete by mechanical vibrating equipment supplemented by hand spading, rodding or tamping.

B. Do not use vibrators to transport concrete inside formwork.

C. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing segregation of mix.

D. Do not allow vibrator to come in contact with form.

3.8 SURFACE FINISHES

A. Finish of Formed Surfaces:
 1. Smooth Form Finish: For formed concrete surfaces exposed to view. This is as cast concrete surface obtained with selected form facing material, arranged orderly and symmetrically with a minimum of seams. Repair and patch defective areas with fins or other projections completely removed and smoothed. Lightly rub all exposed surfaces to...
achieve a uniform appearance. Or Lightly sandblast to expose fine aggregate with occasional
exposure of coarse aggregate and to make the color uniform.

1.9 CURING AND PROTECTION

A. Concrete shall be protected from premature drying, excessively hot or cold temperature, and
mechanical injury according to provisions of ACI 301, Chapter 12. During placing, all concrete
flatwork exposed to or subject to rapid evaporation of moisture under drying conditions
(including hot weather, low humidity, wind and/or sunlight) shall be protected immediately
following screeding with evaporation retarder applied in accordance with recommendations of
manufacturer. Application shall precede and shall be in addition to curing specified below.

B. Concrete shall be maintained in a continuously moist condition for at least 7 days after placement.
Curing shall begin as soon as possible after concrete has been placed and finished. Materials and
methods of curing shall be submitted to Architect-Engineer for review and approval.

C. Curing and Protection: Surfaces not in contact with forms and surfaces in contact with forms for
less than seven days.
1. Curing shall be by water curings, application of liquid membrane curing/sealing compound
or by application of sheet curing materials. Curing compounds shall be applied in
accordance with manufacturer’s recommendations. Liquid membrane curing compound
used on floor slabs receiving applied finish flooring shall be guaranteed by the manufacturer,
in writing, not to impair bonding of adhesive.
2. For slabs use a curing treatment of water curing, curing sheet materials, or by applying and
removing curing/sealing compound. The curing compounds must be applied immediately
after final finishing. For curing by water curing or curing sheet materials, the concrete must
be continually moist-cured for at least 7 days. Curing shall begin immediately after
finishing.

1.17 REPAIR OF SURFACES

A. Contractor shall be responsible for cost of repairing defects.

B. Repair defective pad areas as follows:
1. Correct flatness and levelness defects by grinding or removal and replacement of slab.
Patching of low spots will not be permitted.
2. For cracks less than 1/32 inch, no repairs are required. For cracks greater than 1/32 inch, use
crack repair material. For cracks over 1/8 inch, fill crack with oven-dried sand prior to
application of crack repair material, as recommended by manufacturer. Contractor also has
option to remove and rebuild areas of cracking. Mask cracks to limit crack repair material to
crack only.

END OF SECTION 033000
SECTION 050940 – POST-INSTALLED ANCHORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the furnishing and installation of post-installed anchors.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following pertinent provisions:
 1. ASTM:
 a. A36 - Carbon Structural Steel.
 b. A198 - Steel Bolting Materials for High-Temperature Service.
 d. A307 - Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength.
 e. A510 - General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel.
 g. B633 - Electrodeposited Coatings of Zinc on Iron and Steel.
 h. E488 - Strength of Anchors in Concrete and Masonry Elements.
 i. E1512 - Testing Bond Performance of Bonded Anchors.
 j. F436 - Hardened Steel Washers.
 k. F844 - Washers, Steel, Plain (Flat), Unhardened for General Use.
 2. ACI 318-02, Appendix D - Anchoring to Concrete.

1.4 SUBMITTALS

A. Product Data: For All Members to be Furnished:
 1. Base material being fastened to.
 2. Anchor embedment depth in base material.

1.5 QUALITY ASSURANCE

A. Installation Personnel Qualifications:
 1. Trained and experienced in the type of work being performed.
 2. Knowledgeable of the specific manufacturer’s requirements for quality installation of post-installed anchors.

B. Inspection of Post-Installed Anchor Installation: Field instruction and inspection during the installation process by Manufacturer’s authorized field representative shall take place at the discretion of Engineer. The General Contractor may utilize such instruction and inspection at any
time without the authorization of Engineer. Any costs which may be associated with such services shall be paid for by the General Contractor.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Post-Installed Anchor Material:
 1. Anchors that resist loads through mechanical friction or keying forces:
 a. Expansion Anchors:
 1) Wedge style anchor.
 2) Capable of sustaining an ultimate load of 6 times the imposed load capacity in unit masonry and 4 times the imposed load capacity in concrete when tested in accordance with ASTM E488.
 3) Hilti Kwik Bolt III; Powers Power-Stud; or equal.
 4) Stainless steel in accordance with ASTM F593.
 b. Sleeve Anchors:
 1) Expanding sleeve style anchor.
 2) Hilti LLC or LSL heavy duty sleeve anchors; Powers Lok/Bolt sleeve anchor; or equal.
 3) Hex, acorn, round or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 5) Dry Areas: Mild steel, galvanized in accordance with ASTM B633.
 c. Undercut Anchors:
 1) Expanding sleeve, self-undercutting wedge style anchor.
 2) Hilti HDA Undercut Anchors; Powers Power-Bolt Anchors; or equal.
 3) Hex or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 2. Anchors that resist loads through an injectable chemical adhesive:
 a. In Concrete: Hilti HIT HY-150, HIT-ICE, HIT-T2, HIT RE 500 and HSE 2421; Powers Power-Fast; or equal.
 b. Anchored Material: Deformed reinforcing bars as indicated on the Drawings.
 c. Bonding Strength: Tested in accordance with ASTM E1512.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install Post-Installed Anchors:
 1. In strict accordance with the installation instructions supplied by the Manufacturer.
 2. Under the direction and Site supervision of the Manufacturer’s authorized field representative when directed to do so by the Project Engineer.
 3. In drilled out holes of the proper depth and diameter cleaned of dust and debris according to the Manufacturer’s specific installation instructions.
050940

POST-INSTALLED ANCHORS

B. Post installed anchors anchored to substrate with an injectable adhesive shall have no load applied until adhesive has properly cured and developed specified strength where cure time shall be as called out in the Manufacturer’s literature based on prevailing environmental conditions at the time of installation.

END OF SECTION 050940
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For penetration firestopping sealants and sealant primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4.1: For penetration firestopping sealants and sealant primers, documentation indicating that products comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.
 1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Grace Construction Products.
 3. Hilti, Inc.
 6. NUCO Inc.
8. RectorSeal Corporation.
9. Specified Technologies Inc.
10. 3M Fire Protection Products.
12. USG Corporation.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:

 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.

 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Global in its "Building Materials Approval Guide."
 4) Owner will engage a qualified testing agency to perform tests and inspections.

2.3 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).

 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).

 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.
D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg (74.7 Pa).

1. L-Rating: Not exceeding 5.0 cfm/sq. ft. (0.025 cu. m/s per sq. m) of penetration opening at and no more than 50-cfm (0.024-cu. m/s) cumulative total for any 100 sq. ft. (9.3 sq. m) at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.

F. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content:

1. Sealants: 250 g/L.
2. Sealant Primers for Nonporous Substrates: 250 g/L.
3. Sealant Primers for Porous Substrates: 775 g/L.

G. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

H. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.

1. Permanent forming/damming/backing materials.
2. Substrate primers.
3. Collars.
4. Steel sleeves.

2.4 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer sleeve lined with an intumescent strip, a flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced intumescent elastomeric sheet bonded to galvanized-steel sheet.

E. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.
F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

2.5 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.

2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches (76 mm) high and with minimum 0.375-inch (9.5-mm) strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet (4.57 m) from end of wall and at intervals not exceeding 30 feet (9.14 m).

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches (150 mm) of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.

B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTOPPING SYSTEM SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.

B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under "Firestop Systems."

C. Where FM Global-approved systems are indicated, they refer to design numbers listed in FM Global's "Building Materials Approval Guide" under "Wall and Floor Penetration Fire Stops."

D. Penetration Firestopping Systems for Metallic Pipes, Conduit, or Tubing.

1. UL-Classified Systems: Match Existing
4. F-Rating: 2 hours.
5. T-Rating: 2 hours.
6. W-Rating: No leakage of water at completion of water leakage testing.
078413

PENETRATION FIRESTOPPING

7. Type of Fill Materials: As required to achieve rating.

END OF SECTION 078413
SECTION 09900 PAINTING

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes surface preparation and field painting of the following:
 1. Exposed conduits and conduit support stanchions and plates.
 2. Wall painting to match existing where restoration is required.
 3. Surface preparation, priming, and finish coats specified in this Section are in addition to shop
 priming and surface treatments.
 B. Paint exposed surfaces of exposed conduits where approved by the Owner and walls that were
 disrupted to accommodate new electrical. Colors to match existing and/or adjacent utilities
 and/or walls. The entire wall section disrupted by new conduit penetrations shall be painted.
 C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and
 labels.

1.3 SUBMITTALS
 A. Product Data: For each paint system specified. Include block fillers and primers.
 1. Material List: Provide an inclusive list of required coating materials. Indicate each material
 and cross reference specific coating, finish system, and application. Identify each material by
 manufacturer's catalog number and general classification.
 2. Manufacturer's Information: Provide manufacturer's technical information, including label
 analysis and instructions for handling, storing, and applying each coating material proposed
 for use.
 B. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors avail-
 able for each type of finish coat material indicated.

1.4 QUALITY ASSURANCE
 A. Source Limitations: Obtain block fillers, primers, and undercoat materials for each coating sys-
 tem from the same manufacturer as the finish coats.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers
 bearing manufacturer's name and label.
 B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum
 ambient temperature of 45 deg F. Maintain containers used in storage in a clean condition, free
 of foreign materials and residue.
 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste dai-
 ly. Take necessary measures to ensure that workers and work areas are protected from fire
 and health hazards resulting from handling, mixing, and application.

1.6 PROJECT CONDITIONS
 A. Do not apply paint in when the relative humidity exceeds 85 percent; or at temperatures less than
 5 deg F above the dew point; or to damp or wet surfaces.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products in the paint schedules.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:

- Benjamin Moore & Co.
- O'Leary Paint Co.
- PPG Industries, Inc.
- Pratt & Lambert, Inc.
- Standard Detroit Paint Co.
- Sherwin Williams Co.

2.2 PAINT MATERIALS, GENERAL

A. Material Compatibility: Provide block fillers, primers, undercoats, and finish coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.

B. Material Quality: Provide manufacturer's best quality paint material of the various coating types specified. Paint material containers not displaying manufacturer's product identification will not be acceptable.

C. Colors: Provide colors selected by the Owner to match existing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.

1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.

2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.

B. Provide seven days' notice to the Owner's Representative prior to the application of epoxy paints.

C. Coordination of Work: Ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.

1. Notify the Owner about anticipated problems using the materials specified over substrates primed by others.

3.2 PREPARATION

A. Cleaning, General: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.

1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
B. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer’s written instructions for each particular substrate condition and as specified.
 1. Provide barrier coats over incompatible primers or remove and reprime.
 2. For coatings applied over previously painted surfaces, test application to check for lifting and other adhesion problems. Perform test in an isolated area where practicable.
 3. Ferrous Metals: Clean ungalvanized ferrous metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with the Steel Structures Painting Council’s (SSPC) recommendations.
 a. Treat bare and sandblasted or pickled clean metal with a metal treatment wash coat before priming.
 b. Touch up bare areas and shop applied prime coats that have been damaged. Wire brush, clean with solvents recommended by paint manufacturer, and touch up with the same primer as the shop coat.
C. Materials Preparation: Mix and prepare paint materials according to manufacturer’s written instructions.
 1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.
 2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.
 3. Use only thinners approved by paint manufacturer and only within recommended limits.

3.3 APPLICATION
A. General: Apply paint according to manufacturer’s written instructions. Use applicators and techniques best suited for substrate and type of material being applied.
 1. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.
 2. Provide finish coats that are compatible with primers used.
B. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.
 1. The number of coats and the film thickness required are the same regardless of application method. Do not apply succeeding coats until the previous coat has cured as recommended by the manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer’s written instructions, sand between applications.
 2. Omit primer on metal surfaces that have been shop primed and touchup painted.
 3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.
 4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, does not deform or feel sticky under moderate thumb pressure, and where application of another coat of paint does not cause the undercoat to lift or lose adhesion.
C. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer’s written instructions.
 1. Brushes: Use brushes best suited for the type of material applied. Use brush of appropriate size for the surface or item being painted.
PAINTING

2. Rollers: Use rollers of carpet, velvet back, or high pile sheep's wool as recommended by the manufacturer for the material and texture required.

3. Spray Equipment: Use airless spray equipment with orifice size as recommended by the manufacturer for the material and texture required.

D. Minimum Coating Thickness: Apply paint materials no thinner than manufacturers recommended spreading rate. Provide the total dry film thickness of the entire system as recommended by the manufacturer.

E. Prime Coats: Before applying finish coats, apply a prime coat of material, as recommended by the manufacturer, to material that is required to be painted or finished and that has not been prime coated by others. Recoat primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn through or other defects due to insufficient sealing.

F. Pigmented (Opaque) Finishes: Completely cover surfaces as necessary to provide a smooth, opaque surface of uniform finish, color, appearance, and coverage. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, repines, or other surface imperfections will not be acceptable.

G. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.

3.4 CLEANING

A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
 1. After completing painting, clean glass and paint spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.
 2. Dispose wash water from latex paint to the sanitary sewer. Excess latex paint shall be salvaged for reuse or solidified for disposal with other construction materials. Dry empty latex paint cans and dispose with other construction materials. Coordinate disposal of alkyd paints and solvents with University project manager.

3.5 PROTECTION

A. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.

B. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.
 1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

END OF SECTION 09900
260510

ELECTRICAL DESIGN AND EQUIPMENT

SECTION 260510 – ELECTRICAL DESIGN AND EQUIPMENT

PART 1 - GENERAL

1.1 SCOPE OF SUPPLY

This section includes design, performance, and technical requirements for Supplier-furnished electrical equipment. The scope of supply shall include the following items:

Low voltage power distribution equipment, including the following:

Low voltage switchboards.
Low voltage panelboards.
Dry type transformers.

1.2 NOT USED

1.3 PERFORMANCE AND DESIGN REQUIREMENTS

Performance and design requirements for the Supplier-furnished electrical equipment are as required by Supplier's design, as indicated in Article 16051.2, on the Electrical Design and Equipment Data Sheets included at the end of this section, and as follows:

<table>
<thead>
<tr>
<th>Design ambient temperature</th>
<th>104° F (40° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site elevation</td>
<td>Less than 3,300 ft (1,000 m)</td>
</tr>
</tbody>
</table>

1.4 CODES AND STANDARDS

Work performed under these specifications shall be done in accordance with the following codes and standards. Unless otherwise specified, the applicable governing edition and addenda to be used for all references to codes or standards specified herein shall be interpreted to be the jurisdictionally approved edition and addenda. If a code or standard is not jurisdictionally mandated, then the current edition and addenda in effect at the date of this document shall apply. These references shall govern the work except where they conflict with the Purchaser's specifications. In case of conflict, the latter shall govern to the extent of such difference:
Work

<table>
<thead>
<tr>
<th>Work</th>
<th>In Accordance With</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The latest revisions of the applicable ANSI C37, NEMA ICS2, IEC, and UL standards</td>
</tr>
</tbody>
</table>

1.5 NOT USED

1.6 APPROVED MANUFACTURERS OF COMPONENTS

For the following components, only the listed manufacturers are recognized as maintaining the level of quality of workmanship required by these specifications. If the Supplier wants to propose a non-listed manufacturer that is considered to provide an equivalent level of quality, this manufacturer must be identified and supporting testimony provided. Acceptance of the manufacturer as a substitute is at the discretion of the Purchaser:

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
</tr>
</thead>
</table>

1.7 NOT USED

1.8 NOT USED

PART 2 – PRODUCTS
2.1

2.1.2 Power Circuit Breakers

The switchgear shall be furnished with high voltage power circuit breakers of standard drawout design with the following design features:

Shall not be forced cooled.

All secondary device contact surfaces and main contact surfaces shall be silver-to-silver, designed and fabricated to be self-aligning and to resist burning and deterioration.

Removable breaker units of the same type and ampere capacity shall be wired alike and shall be mechanically and electrically interchangeable.

Shall be a 3-pole single-throw unit, complete with operating mechanism and other required devices, mounted on a drawout type carriage. Each operating mechanism shall be of the stored energy type with a closing coil and single shunt trip coils. The closing devices, tripping devices, and charging motor shall be designed and rated for operation on the nominal control voltage specified.

Operating mechanisms shall be trip-free in any position and shall be antipump. The breaker main contacts shall not touch or arc across into a faulted circuit when a breaker close signal is received while a trip signal is being applied.

Each breaker shall be furnished with a manual trip push button which mechanically trips the breaker. The manual trip push button and its associated breaker trip linkage shall have no common components with the electrical trip mechanism, except the final breaker release device.

Each breaker shall be furnished with an operations counter which shall be readable from the front of the switchgear unit with the breaker in the connected position.

2.1.2.1 Rating

Power circuit breakers furnished under these specifications shall be provided with the ratings as required by the Supplier's design. All current ratings shall be at least 10 percent greater than the values required by the design. Voltage ratings shall be in accordance with the indicated industry standards for the nominal system voltage utilized.

2.1.2.2 Auxiliary contacts

Each breaker shall be furnished with a sufficient number of auxiliary contacts and auxiliary switch contacts to provide all necessary interlocks for operation of the
breaker. In addition, two normally open and two normally closed sets of spare contacts shall be provided and wired out to terminal blocks for use by the Purchaser.

Breaker mechanism operated auxiliary switches shall operate only when the breaker is in the connected position.

2.1.2.3 Breaker control devices
Each remotely controlled breaker shall be furnished with a local control switch and breaker position switch arranged to provide the following control of breaker operation:

<table>
<thead>
<tr>
<th>Breaker Drawout Position</th>
<th>Remote Control</th>
<th>Breaker Operation</th>
<th>Local Control Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Close</td>
<td>Trip</td>
<td>Close</td>
</tr>
<tr>
<td>Connected</td>
<td>X</td>
<td>X</td>
<td>--</td>
</tr>
<tr>
<td>Test</td>
<td>--</td>
<td>--</td>
<td>X</td>
</tr>
<tr>
<td>Disconnected</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Each circuit breaker local control switch shall have a trip/close escutcheon, shall have a center normal position, shall be spring return to normal from close and trip, shall have red and green targets to indicate the latest operation of the switch, and shall be furnished with indicating lights. One set of these contacts shall be wired out to terminal blocks for use by the Purchaser.

The breaker position switch shall be furnished with four stages. Two breaker position switch contacts shall close only when the breaker is in the connected position; the remaining two contacts shall close only when the breaker is in the test position.

2.1.3 Power and Control Conductors

Switchgear power and control conductors shall be furnished in accordance with the requirements of the articles which follow. Provisions shall be made for bus expansion, to prevent undesirable or destructive mechanical strains in the bus supports and connections, through a full ambient temperature range from -13° F (-25° C) to +104° F (+40° C). Expansion joints shall be furnished where required.

2.1.4 NOT USED

2.1.5 NOT USED

2.1.6 NOT USED

2.2.5 NOT USED
2.2.6 Control Power

Electrical power for control and instrumentation shall be as required by Supplier's design.

Where dc control power is specified on the Electrical Design and Equipment Data Sheets, the Supplier shall provide a common bus throughout the controller assembly requiring a single connection of dc control power from the Purchaser. Suitable branch circuit protection and control power disconnecting means shall be provided for each controller unit.

The paragraphs which follow apply only to ac control power.

Where ac control power is specified on the Electrical Design and Equipment Data Sheets, all control power requirements necessary to operate each controller shall be provided by means of individual control power transformers. Each controller unit shall be provided with an individual transformer for control and instrumentation associated with that controller only.

Control power transformers shall be rated not less than 1 kVA. Each control power transformer shall be provided with primary and secondary fuses. The size of each control power transformer shall be clearly indicated on each section schematic and wiring diagram submitted for review.

Control power interlocking provisions shall be provided to allow testing of the control operation of each controller from an external source of control power with the contactor disconnected and isolated from the main bus.

Control power interlocking provisions shall not allow the control power transformer of the controller to be energized during testing as described above.

The Supplier shall furnish a manually operated switch to transfer the control power from the normal source to the external test circuit source.

2.2.7 NOT USED

2.2.8 Wiring and Wiring Diagrams

The Supplier shall provide internal wiring, connections, and diagrams in accordance with the requirements of the articles which follow.

2.2.8.1 Control and instrument wiring

All low voltage control and instrument wiring used within the controller assemblies.

All internal wiring shall be neatly and carefully installed and shall be terminated on terminal blocks or devices. Conductors and terminals shall be plainly lettered or marked in accordance with the manufacturer's connection diagrams. Any controller
assembly that is split for shipment shall have terminal blocks adjacent to the split and shall be provided with wiring required to interconnect the shipping sections.

All leads for external circuit wiring shall be connected to terminal blocks located for convenient connection of external circuits. Splices will not be permitted in control wiring or instrument leads.

The minimum sizes of wire used in the controller assembly for control and instrumentation shall be in accordance with the following table:

<table>
<thead>
<tr>
<th>Minimum Wire Service</th>
<th>Size, AWG (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supplies</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Current transformer circuits</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Indicating lights and annunciator circuits</td>
<td>16 (1.5)</td>
</tr>
<tr>
<td>All other wiring</td>
<td>14 (2.5)</td>
</tr>
</tbody>
</table>

All spare contacts on relays, control switches, limit switches, or similar devices shall be wired to accessible terminal blocks for the Purchaser's future connections. All wiring leaving an enclosure shall leave from terminal blocks and not from other devices within the enclosure.

Terminal blocks shall not be mounted in compartments containing cable or bus operating at voltages above 600 volts.

Control and potential buses, as required, shall be switchboard wire installed at the rear of the instrument and control compartment.

Each terminal block, conductor, relay, circuit breaker, fuse block, and other auxiliary devices and terminals shall be permanently labeled to coincide with the identification indicated on the drawings. All wiring terminations shall be identified by legible markings on the device terminals.

2.2.8.2 Diagrams

Wiring diagrams shall be in accordance with the requirements specified herein. Controller schematic, connection, and interconnection diagrams furnished by the Supplier shall be based on schematic (elementary) diagrams and connection diagrams furnished by the Purchaser.

The typical schematic diagram of each type of controller specified shall be submitted with the proposal.

The Supplier shall prepare his schematic (elementary), connection, and interconnection diagrams which shall have terminal designations and terminal arrangement acceptable to the Engineer.
ELECTRICAL DESIGN AND EQUIPMENT

The complete connection diagram of each controller unit shall be on an individual sheet. Information on each connection diagram sheet shall include point-to-point wiring of the entire controller as it will be physically constructed, including wiring on the contactor itself. Elementary diagrams of control and instrument circuits, contact arrangement of switches, and internal wiring of relays and instruments for each section shall be on additional sheets as required. Interconnection diagrams shall be on separate sheets. All sheets shall be the same size.

Information indicated on the Supplier's drawings shall include wiring of the individual units as they will actually appear in the assembly, contact arrangements of switches, and internal wiring of relays and instruments.

Each item of mounted equipment indicated on the diagrams shall be identified by item number and name.

2.2.8.3 Wiring method

If the wiring method is to be an internal programmable logic controller (PLC) as indicated on the Electrical Design and Equipment Data Sheets, then the Supplier shall furnish a Purchaser-approved PLC in each shipping split of each controller assembly. All control wiring from the device contacts and protective relays to the internal PLC shall be installed by the Supplier as indicated on the typical schematics. The Purchaser will program the PLCs as required.

If a remote PLC is to be used as indicated on the Electrical Design and Equipment Data Sheets, the Supplier has no responsibility to provide or connect device contacts and protective relays to the PLC.

2.2.9 Tightening of Connections

The Supplier shall include on his erection and assembly drawings complete information for tightening of all electrical connections secured with bolts or studs. The information furnished shall include torque wrench settings or complete details of other tightening procedures recommended for bus joints, connector attachments, and contact attachments.

2.3 NOT USED

2.4 Low Voltage Power Distribution Equipment

When specified to be in the Supplier's scope of supply, the Supplier shall supply low voltage power distribution equipment in accordance with the articles below and as required by the Supplier's design. The design shall be in accordance with accepted industry practices and standards for electrical power generation.

2.4.1 Low Voltage Panelboards and Switchboards
Low voltage power panelboards and switchboards shall be furnished in accordance with the following articles.

2.4.1 Enclosures

Panelboards and switchboards shall be furnished with enclosures of the types as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Description of Enclosure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoors - clean area</td>
<td>Indoor with gasketed cover, ventilated</td>
</tr>
<tr>
<td>Indoors - dusty area</td>
<td>Indoor dustproof enclosure, unventilated</td>
</tr>
<tr>
<td>Outdoors - protected</td>
<td>Combination outdoor/dustproof, unventilated</td>
</tr>
<tr>
<td>Outdoors - unprotected</td>
<td>Wash-down/dustproof, unventilated</td>
</tr>
<tr>
<td>Hazardous</td>
<td>Listed for conditions present</td>
</tr>
</tbody>
</table>

2.4.2 Busing

Main, neutral, and ground busing shall be copper. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design.

2.4.3 Circuit breakers

Main breakers shall be provided in all panelboards and switchboards. Main and feeder breakers shall be molded case, bolt-in type. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design. Breakers and busing shall be individually rated and labeled for the required short-circuit amperes available. Tandem or miniature circuit breakers shall not be used.

2.4.4 Spares

Total expected load on each panelboard or switchboard shall not exceed 80 percent of its continuous current rating. At least one spare feeder breaker of each size and number of poles used for loads shall be provided in each panelboard and switchboard. At least six poles of spare space shall be provided in each panelboard and switchboard.

2.4.2 Dry Type Distribution Transformers

Dry type distribution transformers shall be used indoors in dry areas only and shall meet the following requirements:
260510

ELECTRICAL DESIGN AND EQUIPMENT

Shall have copper windings rated for 302°F (150°C) temperature (by resistance) rise above 104°F (40°C) ambient.

Shall be sized to approximately match the nominal ampacity of the panelboard or switchboard which is connected to its secondary terminals.

Sound level shall not exceed 45 dBA when measured in accordance with NEMA standards.

When installed in areas where dirt and dust are present, shall have filters installed on vent openings or shall be non-ventilated.

Shall be appropriately derated when the ambient temperature exceeds 104°F (40°C).

2.4.3 Nameplates

Engraved nameplates shall be furnished for the front of each item of equipment.

PART 3 – EXECUTION

Not Applicable.

END OF SECTION 260510
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
 B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

C. Multi-conductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for nonmetallic-sheathed cable, Type NM with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

E. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway, Armored cable, Type AC, Metal-clad cable, or Type MC as per applicable code.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

I. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

J. Branch Circuits in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

K. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.7 FIRESTOPPING
 A. Apply fire-stopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 C. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements.
 a. Panelboards, uninterruptable power sources, transformers, and associated switches.
 D. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
 E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.

B. Qualification Data: For testing agency and testing agency's field supervisor.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to Operation and Maintenance Data include the following:
 a. Instructions for periodic testing and inspection of grounding features
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 NOT USED

2.2 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications
 Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross
section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad 3/4 inch by 10 feet.
 1. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 NOT USED

3.3 NOT USED

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Receptacle circuits.
 4. Three-phase motor and appliance branch circuits.
 5. Flexible raceway runs.
 6. Armored and metal-clad cable runs.
 7. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Owner’s representative promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawing: For fabrication and installation details for electrical hangers and support systems.

1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which hangers and supports will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Items penetrating finished ceiling, including the following:
 a. Access panels.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 7. Channel Dimensions: Selected for applicable load criteria.

B. Aluminum Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

2. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.

4. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

5. Channel Dimensions: Selected for applicable load criteria.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing CO., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 4000psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Metal wireways and auxiliary gutters.
 3. Surface raceways.

B. Related Requirements:

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NOT USED

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

A. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

B. Wireway Covers: Screw-cover type unless otherwise indicated.

C. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

B. Surface Metal Raceways: Galvanized steel with snap on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Owner

2.5 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, with gasketed cover.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

F. Cabinets:

1. NEMA 250, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 NOT USED

2.7 NOT USED

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:

 a. Loading dock.
b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
c. Mechanical rooms.
d. Gymnasiums.

4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 3. EMT: Comply with NEMA FB 2.10.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

D. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Arrange stub-ups so curved portions of bends are not visible above finished slab.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. Support conduit within 12 inches of enclosures to which attached.
H. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

Q. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

U. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

3. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

4. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

V. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

W. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

X. Locate boxes so that cover or plate will not span different building finishes.

Y. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

AA. Set metal floor boxes level and flush with finished floor surface.

BB. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

3.3 NOT USED

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.5 FIRESTOPPING

A. Install fire-stopping at penetrations of fire-rated floor and wall assemblies.

3.6 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLEING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water-stop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABELING

F. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, water-stop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber water-stop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 4000-psi 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLING

2. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLING

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position water-stop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels, including arc-flash warning labels.
8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 Manufacturers:

A. Manufacturers: Subject to compliance with requirements:

IDENTIFICATION FOR ELECTRICAL SYSTEMS

2. Brady.
4. IEM Products, Inc.
5. Panduit.
7. Safety Label Solutions.
9. Utility Safeguard, LLC.

2.2 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F ambient; 180 deg F, material surfaces.

2.3 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
B. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."
C. Warning labels and signs shall include, but are not limited to, the following legends:
IDENTIFICATION FOR ELECTRICAL SYSTEMS

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.4 LABELS

A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pre-tensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.

C. Self-Adhesive Labels:
 1. Preprinted, 3-mil thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.
 2. Vinyl, thermal, transfer-printed, 3-mil thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 a. Nominal Size: 3.5-by-5 inch.
 3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 4. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.5 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pre-tensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.6 TAPES AND STENCILS:

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4 inch wide black stripes on 10 inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.

D. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.7 Tags

A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.

B. Write-On Tags:

1. Polyester Tags: 0.010 inc thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.8 Signs

A. Laminated Acrylic or Melamine Plastic Signs:

1. Engraved legend.
2. Thickness:

 a. For signs up to 20 sq. inches, minimum 1/16-inch.
 b. For signs larger than 20 sq. inches, 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Punched or drilled for mechanical fasteners.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.

2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F.
5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch centers. Stop stripes at legends. Apply stripes to the following finished surfaces:

 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 2. Wall surfaces directly external to raceways concealed within wall.
 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive vinyl labels. Install labels at 30-foot maximum intervals.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

D. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase-and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.

 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.

 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.

 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

F. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

G. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

H. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and hand-holes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

I. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive vinyl labels with the conductor designation.

J. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 3. Coordinate identification with Project Drawings, manufacturer’s wiring diagrams, and operation and maintenance manual.

L. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

M. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

N. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

O. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

P. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
Q. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch high letters for emergency instructions at equipment used for power transfer.

R. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Substations.
 h. Emergency system boxes and enclosures.
 i. Motor-control centers.
 j. Enclosed switches.
 k. Enclosed circuit breakers.
 l. Enclosed controllers.
 m. Variable-speed controllers.
 n. Push-button stations.
 o. Power-transfer equipment.
 p. Contactors.
 q. Remote-controlled switches, dimmer modules, and control devices.
 r. Battery-inverter units.
 s. Battery racks.
 t. Power-generating units.
 u. Monitoring and control equipment.
v. UPS equipment.

END OF SECTION 260553
SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes: distribution, energy efficient dry-type transformers rated 600 V and less, with capacities up to 1500 kVA. Nominally: 408V 3Ø 60Hz delta input; transformer to output 208V 3Ø 60Hz/ (120V 1Ø).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For testing agency.
C. Source quality-control reports.
D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. GE Electrical Distribution & Control.
3. Siemens Industries, Inc.
4. Square D/Groupe Schneider NA.

2.2 GENERAL TRANSFORMER REQUIREMENTS
A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.
D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
LOW VOLTAGE TRANSFORMERS

E. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper.

F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.

D. Enclosure: Ventilated.
 1. NEMA 250, type 2: Core and coil shall be encapsulated within resin compound utilizing a vacuum pressure impregnation process to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.

E. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: NSF/ANSI 61 gray.

F. Taps for Transformers 3 kVA and Smaller: None

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature. Chosen

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.

K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for non-sinusoidal load current-handling capability to the degree defined by designated K-factor. Chosen
LOW VOLTAGE TRANSFORMERS

1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
2. Indicate value of K-factor on transformer nameplate.
3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
2. Include special terminal for grounding the shield.

M. Neutral: Rated 200 percent of full load current for K-factor rated transformers.

N. Wall Brackets: Manufacturer's standard brackets or floor mounted.

O. Fungus Proofing: Permanent fungicidal treatment for coil and core.

P. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
1. 51 to 150 kVA: ~55 dBA+0-10
2. 751 to 1000 kVA: ~70 dBA +0-10
3. 1001 to 1500 kVA: ~70 dBA +0-10

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
2. Ratio tests at the rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at the rated voltage connections.
4. No load losses, and excitation current and rated voltage at the rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb.

1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Perform tests and inspections and prepare test reports.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

E. Remove and replace units that do not pass tests or inspections and retest as specified above.

F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
LOW VOLTAGE TRANSFORMERS

3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.
3. Load centers.
4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.

1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details.
PANELBOARDS

2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F 23 deg F to plus 105 deg F.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet (2000 m).

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

 1. Notify WSU no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without WSU written permission.
 3. Comply with NFPA 70E.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Enclosures: Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Height: 84 inches (2.13 m) maximum.

3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.

4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

7. Finishes:
 a. Panels and Trim: Galvanized Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Galvanized Steel.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
F. Incoming Mains:

1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

G. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.

2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
7. Split Bus: Vertical buses divided into individual vertical sections.

H. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

I. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting
PANELBOARDS

and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

J. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: Ten percent.

K. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Panelboards, Overcurrent Protective Devices, Controllers, Contractors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.
PANELBOARDS

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker or lugs only.

G. Branch Overcurrent Protective Devices: Fused switches.

H. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

2.4 BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: lugs only.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller, with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.
F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. MCCB: Comply with UL 489, to meet available fault currents.
1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
PANELBOARDS

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."
 2. Fused Switch Features and Accessories:
 a. Standard ampere ratings and number of poles.
 b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

2.6 IDENTIFICATION

 A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

 B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

 C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

 D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

 A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

 B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:

1. Install panelboards on cast-in-place concrete equipment base(s) where applicable.
2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
3. Comply with requirements for seismic control devices.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90” above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
J. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.

K. Mount surface-mounted panelboards to steel slotted supports 5/8 inch to 1 1/4 inch in depth. Orient steel slotted supports vertically.

L. Install overcurrent protective devices and controllers not already factory installed.

1. Set field-adjustable, circuit-breaker trip ranges.
2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

M. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

N. Install filler plates in unused spaces.

O. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

P. Arrange conductors in gutters into groups and bundle and wrap with wire ties. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION
A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate.

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate.

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL
A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.

4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION
A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Isolated-ground receptacles.
5. Cord and Plug receptacles.
6. Communications outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
WIRING DEVICES

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from
mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.4 GFCI RECEPTACLES

A. General Description:
 1. Straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

2.5 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
 1. Description:
 a. Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
2.8 FINISHES

A. Device Color:

1. Wiring Devices Connected to Normal Power System: Per Owner, match existing in room or area of work.

2. Wiring Devices Connected to UPS: Per Owner, Yellow.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.

2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.

3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.

4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.

2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.

3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.

4. Existing Conductors:

 a. Cut back and pigtai, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtailed that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES
A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION
A. Comply with Section 260553 "Identification for Electrical Systems."
B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Panelboards.
 b. Switchboards.
 c. Enclosed switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit [in electronic format suitable for use in coordination software and in PDF format.

5. Coordination charts and tables and related data.

6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data, include the following:
FUSES

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 3. Ferraz Shawmut, Inc.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
 4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, time delay.
FUSES
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
7. Type T: 600-V, zero- to 800-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
1. Feeders: Class RK1, fast acting Class J, fast acting.
2. Power Electronics Circuits: Class J, high speed.
3. Other Branch Circuits: Class RK1, time delay.
4. Control Transformer Circuits: Class CC, time delay, control transformer duty.

3.3 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Non-fusible switches.
3. Molded-case circuit breakers (MCCBs).
5. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of NRTL listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge fuse interiors to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 6. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 8. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
6. Lugs: Mechanical type, suitable for number, size, and conductor material.
7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. See WSU design standards.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:

1. Instantaneous trip.
2. Long- and short-time pickup levels.
3. Long- and short-time time adjustments.
4. Ground-fault pickup level, time delay, and I2t response.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system.
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 8. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 9. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
 10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 12. Electrical Operator: Provide remote control for on, off, and reset operations.

2.4 MOLDED-CASE SWITCHES

A. NOT USED

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One NO contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, [Type 1] <Insert type>.
 2. Outdoor Locations: NEMA 250, Type 3R.
 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in section 260529.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges
PART 1 - SCOPE

1.1 SYSTEM

These specifications describe a high efficiency continuous duty, three-phase, on-line, double conversion, solid-state Uninterruptible Power Supply system (UPS). The UPS shall operate utilizing the existing power distribution system to provide high quality, uninterruptible power to critical loads. The model T90S306KS6XSN UPS shall consist of an AC/DC multi-level Insulated Gate Bipolar Transistor (IGBT) Rectifier, DC/DC Converter/Battery Charger, DC/AC multi-level IGBT Inverter, integral static bypass, front-accessible controls, display, and monitor.

1.2 Preferred UPS Vendor

The contractor is to purchase and supply the specified Toshiba UPS from WSU preferred UPS vendor (Ancona Controls). Contact information as follows:

WSU Assign Sales Rep: Beth Ancona
Ancona Controls
28021 Grand Oaks Ct.
Wixom, MI 48393
248-924-2747

PART 2 - SYSTEM DESCRIPTION

2.1 Applicable Standards:

The UPS shall be designed in accordance with and be compliant with the following sections of the current revisions of the following standards:

UL 1778/UL Listed
FCC Class A, Article 47, Part 15.B
ISO 900, ISO 14001
ANSI C62.41
NFPA – 70 National Electric Code
OSHA
2.2 Components:

The UPS shall consist of the following components:
1. Multi-level IGBT AC/DC Rectifier
2. IGBT DC/DC Battery Converter/Charger
3. Multi-level IGBT DC/AC Inverter
4. Hybrid Integral Static Bypass (Thyristor switch with wrap around contactor)
5. Microprocessor Logic and Control Panel
6. Battery Cabinet with DC Breaker (T90-06K54EN-VC) (Derated <100kVA Data)
7. Maintenance Bypass Panel (Circuit Breakers) (T90MBSS06K-S3KS) (<100kVA Data)
8. RemotEye II UPS (RMTI-EXT-R4) communications and web-based monitor card
9. Network communications with MODBUS interface adapter

2.3 System Operation:

The UPS shall operate as a fully automatic on-line system in the following modes:

1. Normal

 IGBT Rectifier converts AC input power to DC power for the inverter and for charging the batteries. The IGBT inverter continuously supplies clean and stable AC power to the critical load. The UPS Inverter output shall be synchronized with the bypass AC source when the bypass source is within the AC input voltage and frequency specifications.

2. Loss of Main Power

 When Main Power is lost, the batteries shall automatically back up the inverter so there is no interruption of AC power to the critical load.

3. Return of Main Power

 The system shall recover to the operating mode in Item 1 and shall cause no disturbance to the critical load while simultaneously recharging the backup battery.

4. Transfer to Bypass AC source

 If the UPS becomes overloaded the UPS controls shall automatically transfer the critical load from the inverter output to the bypass AC source without interruption. When the overload condition is removed, after a preset “hold” period the UPS will automatically re-
transfer the critical load from the bypass to the inverter output without interruption of power to the critical load.

5. Maintenance Bypass

An optional manual make-before-break maintenance bypass panel may be provided to electrically isolate the UPS for maintenance or test without affecting load operation. This bypass mode when selected facilitates testing or repair intervals.

PART 3 - GENERAL CONDITIONS FOR INSTALLATION

3.1 Required Output Capacity:

The 60 kVA (54 KW) UPS unit shall be capable of being operated either independently or connected in parallel.

3.2 UPS Environment:

3.2.1 Standard Environmental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Allowance</td>
<td>77°F +/-3°F (25°C) Environ within enclosure</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>32° to 104°F (0° to 40°C)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>5 - 95% (Non-condensing)</td>
</tr>
<tr>
<td>Altitude</td>
<td>< 700 ft. (<213 m) (without derating)</td>
</tr>
</tbody>
</table>

3.2.2 Discharge Heat from UPS at full load.

60 kVA : ≥8,500 Btu/Hr

3.2.3 Grounding System:

It is necessary that UPS electrical loads be grounded to the same facility ground as the UPS ground, and that ground wiring shall be for the exclusive use of the UPS and load. Ground wiring for resistance shall be less than ≤ 10 Ohms between the facility ground net and the UPS.

3.2.4 Clearances for installation

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Level</td>
<td>30” minimum from top of UPS to ceiling</td>
</tr>
<tr>
<td>Front</td>
<td>40” minimum for maintenance (Local and</td>
</tr>
</tbody>
</table>
3.2.5 Cable Access

60 kVA

Bottom : Knockouts for power cable access
Rear : Zero clearance possible
Sides : Zero clearance if using bottom cable access (Standard knockouts for left/right side cable access)
Base : Channel mounted

3.2.6 Seismic Mount Provisions

: Manufacturer to specify installation geometry requirements.
 (Detroit BOCA seismic input basis)

PART 4 - SYSTEM PARAMETERS

4.1 UPS Requirements:

4.1.1 General Requirements:

Rated Output Capacity : 60 kVA (54KW)

AC/DC Rectifier Type : AC/DC multi-level IGBT Rectifier
DC/AC Inverter Type : DC/AC multi-level IGBT Inverter
External Dimensions (W) (D) (H)

60 kVA : 29.5 in. x 79.6 in. x 78.7 (80.6*) in.
 * Unit height with fan assembly installed

Weight

60 kVA : 880 lbs UPS; Total UPS ~2,746 lbs.

Paint Color : Black (Munsell N1.5)

4.1.2 AC Input:

Configuration : 3-Phase/3-Wire + Ground
Rated Voltage : 480V
Voltage Variation : +15% to −20%
Rated Frequency : 60Hz
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 60kVA/54KW UPS Unit

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Variation</td>
<td>+/-10%</td>
</tr>
<tr>
<td>Input Power Factor</td>
<td>Greater than 0.99 lagging at 25%-115% load</td>
</tr>
<tr>
<td>Current THD</td>
<td>3% maximum THD at 60%-100% load 6% maximum THD at 25%-59% load (No input harmonic filter required)</td>
</tr>
</tbody>
</table>

4.1.3 Charging Function:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Nominal Voltage</td>
<td>480 V</td>
</tr>
<tr>
<td>AC Ripple on DC Bus</td>
<td>< 0.2% of DC Voltage</td>
</tr>
<tr>
<td>DC Voltage Range</td>
<td>400 V to 545 V</td>
</tr>
<tr>
<td>DC Float Charging Voltage</td>
<td>545 V Maximum charging current:</td>
</tr>
<tr>
<td>100 kVA</td>
<td>25 A</td>
</tr>
<tr>
<td>AC Ripple on DC Charging Circuit</td>
<td></td>
</tr>
<tr>
<td>100 kVA</td>
<td>0.23%</td>
</tr>
</tbody>
</table>

4.1.4 Bypass Input:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>3-Phase/3-Wire + Ground</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>480 V</td>
</tr>
<tr>
<td>Input Voltage Synchronous Range</td>
<td>+/-10%</td>
</tr>
<tr>
<td>Rated Frequency</td>
<td>60Hz</td>
</tr>
<tr>
<td>Frequency Variation</td>
<td>+/-5%</td>
</tr>
<tr>
<td>Frequency Synchronous Range</td>
<td>+/-1 – 5% (0.6 – 3.0 Hz) Selectable</td>
</tr>
<tr>
<td>Bypass Overload Capacity</td>
<td>1000% for one cycle</td>
</tr>
</tbody>
</table>

4.1.5 AC Output: Configuration

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>3-Phase/3-Wire + Ground</td>
</tr>
<tr>
<td>Rated Capacity</td>
<td>60 kVA (54 kW)</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>480 V</td>
</tr>
<tr>
<td>Efficiency at % Full Load</td>
<td>20% 40% 60% 80% 100%</td>
</tr>
<tr>
<td>60 kVA</td>
<td>92.5% 95.6% 95.6% 95.6% 95.6%</td>
</tr>
<tr>
<td>Voltage Regulation</td>
<td>+/-1% (0-100% Unbalanced Load)</td>
</tr>
<tr>
<td>Voltage Adjustment Range</td>
<td>+/-3%</td>
</tr>
<tr>
<td>Rated Frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Frequency Regulation</td>
<td>+/-0.04% (Free-Running Mode)</td>
</tr>
<tr>
<td>Frequency Slew Rate</td>
<td>+/-1.0 Hz/s to +/-5.0 Hz/s (Selectable)</td>
</tr>
</tbody>
</table>
PART 5 - FUNCTIONAL DESCRIPTION

The UPS shall protect the load against surges, sags, undervoltage, and voltage fluctuation. The UPS shall have built-in protection against permanent damage to itself and the connected load for all predictable types of malfunctions. The load shall be automatically transferred to the bypass line without interruption in the event of an internal UPS malfunction. The status of protective devices shall be indicated on a LCD graphic display screen on the front of the UPS.

5.1 IGBT Rectifier

5.1.1 General

A solid-state, multi-level IGBT Rectifier shall convert the incoming AC power into DC power to supply the inverter input and system battery.

5.1.2 Voltage Regulation

The rectifier output voltage shall not deviate by more than +/- 1.0% RMS under the following conditions:

- 0% - 100% loading (balanced and unbalanced non-transient loading)
- +15% – 20% utility voltage change
- +/-10.0% utility frequency change

5.1.3 Reflected Harmonic Content

Input current THD shall be:
5.2 IGBT DC-DC Converter

5.2.1 General

A solid-state IGBT Battery Converter/Charger shall control battery charging.

5.2.2 Battery Charge Current Limit

The Converter logic shall provide DC for controlled battery charging. The battery current sensing shall be independent of the Converter DC Output current sensing to provide precise battery recharging control. The DC/DC Charging Converter shall include a circuit to regulate the battery charging current to between 100% and 125% of maximum battery charging current.

5.2.3 Battery Protection

The converter shall be provided with monitoring and control circuits to protect the battery system from damage due to excessive discharge. Converter shutdown shall be initiated when the battery voltage reaches a discharge cutoff voltage of 400 VDC. Automatic shutdown based on discharge time is not acceptable.

5.2.4 DC Ripple (Without batteries)

AC Ripple on the DC Bus shall be less than 0.2%.
AC Ripple on the Battery charging circuit shall be less than 0.23% for the 60/80/100/160kVA UPS.

5.3 IGBT Inverter:

5.3.1 General

The inverter shall be composed of multi-level IGBT power transistors controlled utilizing an Advanced Technology PWM logic. The Inverter shall continuously convert DC power from the IGBT Rectifier to AC power for the critical loads. When the utility voltage or frequency exceeds the specified UPS input tolerances, the inverter shall continuously convert DC power from the battery source to AC power for the critical load.

The inverter shall be capable of providing rated output while operating at any battery voltage within the battery operating range. When the DC battery voltage reaches the operational low voltage limit during a loss of utility AC power, the inverter shall automatically shut off.

5.3.2 Output Voltage
The Inverter output voltage shall not deviate by more than +/- 1.0% RMS under the following steady state conditions as the Inverter DC input voltage varies from maximum to cutoff:

- 0% to 100% Unbalanced load
- 0% to 100% Balanced load

5.3.3 Synchronization

The Inverter output voltage shall be automatically synchronized with the bypass AC source as long as the source is within the tolerable frequency and voltage range. If the bypass AC source is not within the range, the control circuitry will stop synchronization and operate the inverter in free running mode. When the bypass AC source recovers to within tolerance, the inverter shall change its frequency (slew rate 1 to 5 Hz/sec, selectable) and track the bypass AC source until synchronization is achieved without causing any disturbance to the load.

5.3.4 Output Control

The Inverter can be manually started and stopped using the LCD touch screen controls.

5.3.5 Overload Capacity:

The Inverter output shall be capable of providing an overload current of 125% for 2 min. and 150% for 1 min. A message on the control panel shall indicate this condition. If the time limit associated with the overload condition expires, or the overload is in excess of the set current limit, the load power shall transfer to the bypass source without interruption.

5.4 Static Bypass Circuit:

5.4.1 General:

An integral static bypass circuit shall be provided to supply an alternate source of power to the critical load in the event the inverter cannot supply rated output power. The bypass circuit shall be capable of supplying the UPS rated load current and accommodate fault clearing.

The 100% duty rated static bypass panel shall be composed of a thyristor switch with a wrap-around contactor. The thyristor switch shall be a high-speed transfer device. The wrap-around contactor shall be electrically connected in parallel to the thyristor switch and shall, at the same time as the thyristor switch, be energized and, upon closure, maintain the bypass source to the load to improve the efficiency and reliability of the system. The thyristor switch shall only be utilized for the time needed to energize the contactor closure.
The UPS system logic shall employ sensing which shall cause the thyristor switch to energize and provide an uninterrupted transfer of the load to the bypass source when any of the following limitations are exceeded:

- Inverter output undervoltage or overvoltage.
- Overloads exceeding 125% for 2 min., or 150% for 1 min. DC circuit undervoltage or overvoltage.
- Final discharge voltage of system battery is reached and the bypass source is present, available, and within tolerance range.

Transferring the output from the inverter to the bypass source and vice versa shall be performed by pressing “START/STOP” icon on the touchscreen display.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Transfer mode</th>
<th>Transfer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inverter to Bypass</td>
<td>Synchronized</td>
</tr>
<tr>
<td>Automatic</td>
<td>(Overload, Internal Fault)</td>
<td>Interrupted</td>
</tr>
<tr>
<td>“BYPASS” switch operated</td>
<td>Inverter to Bypass</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td>Automatic</td>
<td>Bypass to Inverter</td>
<td>Transfer inhibited</td>
</tr>
<tr>
<td>(Auto-Retransfer Mode)</td>
<td>Uninterrupted</td>
<td></td>
</tr>
<tr>
<td>“UPS” switch operated</td>
<td>Bypass to Inverter</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td></td>
<td>Transfer inhibited</td>
<td></td>
</tr>
</tbody>
</table>

If the bypass source is beyond the conditions stated below, interrupted transfer shall be made upon detection of a fault condition.

- Bypass voltage greater than +10%, -10% from the UPS rated output voltage.
- Bypass frequency exceeds ±3 Hz from the UPS rated output frequency.

5.4.2 Overload Capacity in Bypass:

- Continuous duty: 125% of the system rated capacity
- Overload duty: 1000% of ampere rating for 1 cycle.

5.4.3 Retry function:

When an internal warning/failure has been detected, power flow shall automatically switch from the main circuit (inverter) to the bypass circuit without interruption to the load. If the internal warning is cleared, UPS shall automatically switch the power flow from the bypass circuit to the main circuit (inverter) without interruption.

5.5 Metering, Monitoring, Alarms, and Controls
5.5.1 Status Indicators

The Front Panel shall include LED status indicators for the following states:
- Load on Inverter
- Battery Operation
- Load on Bypass Overload
- LCD Fault
- UPS Fault

5.5.2 EPO (Emergency Power Off) Button

The Front Panel shall have an Emergency Power Off button (EPO) located on the front panel that, when pressed, will shut down the UPS.

5.5.3 Liquid Crystal Display (LCD) Touch Panel

The Front Panel shall include a LCD touch panel that shall provide performance data, statistics, and operating conditions. The following metering will be displayed on LCD touch panel:
- AC Input Voltage
- AC Input Frequency
- AC Output Voltage
- AC Output Current
- AC Output Frequency
- Battery DC Voltage
- Battery DC Current
- AC Bypass Voltage
- AC Bypass Frequency

5.5.4 Mimic Panel

A one-line diagram of the system shall be displayed on the touch panel display panel to provide a visual status of contactors within UPS. The panel shall display the followings:
- AC Input, DC Input
- Rectifier in Operation
- Inverter in Operation
- UPS/Bypass supply
- Battery Operating Condition (float charge/discharge)
- Fault, Warning
- Operation Guidance (LCD Display)
- Fault Guidance (LCD Display)

5.5.5 Isolated Control Signals
Ten (10) Normally Open isolated annunciation signal outputs for remote use will be furnished. Eight (8) alarms shall be user programmable, and shall be factory default set as follows:

- Summary Alarm
- Output 1: Load on Bypass
- Output 2: Load on Inverter
- Output 3: Battery Operation
- Output 4: Rectifier Operation
- Output 5: Battery Low Voltage
- Output 6: Overload
- Output 7: Spare
- Output 8: Total alarm
- Output Contactor Closed

Contact rating:
- Output: 1 A @ 30 VDC.
- Input: 24 VDC

UPS module accepts remote switches to initiate the following remote operations. These contacts shall be field supplied:

- Remote Start
- Remote Stop
- Battery Temperature High
- Power Demand
- Remote Emergency Power Off (EPO)

Contact rating:
- Input: 24 VDC

The contact signal inputs and outputs shall be wired to a terminal block located inside the UPS.

PART 6 - MECHANICAL DESIGN

6.1 UPS Enclosure Sections

The UPS shall be a freestanding NEMA1 enclosure equipped with a leveling channel base. The enclosure shall include provisions for hoisting, jacking, and forklift handling.

6.2 The seismic structural mounting requirements (welded or bolted) shall be detailed for each/all cabinet modules.

6.3 Cable Access
Cable access to the UPS shall be
- Bottom entry
- Side entry when using optional side cabinet
- Top entry when using optional side cabinet

PART 7 - WARRANTY

7.1 UPS Warranty

The UPS system shall come with a comprehensive two year on-site warranty on all mechanical, electrical, electronic components. Parts, labor, freight and travel are included during warranty period.

7.2 UPS Battery Warranty

The battery system shall come with a full Three-year warranty with 7 year’s prorata total of ten years. Parts, labor, and travel are included during warranty period.

7.3 Warranty Support Availability

Typical on-site response time shall be 4 hours (24 hours maximum).

7.4 UPS Service Agreement

UPS Preferred Vendor status has already been determined by the Owner. And, thus in addition to warranty requirements listed herein, additional warranty and service requirements shall apply.

PART 8 - BATTERY CABINETS

The UPS manufacturer will provide One T90-06K0054EN-VC matching battery cabinet with DC breaker.

PART 9 - COMMUNICATIONS

9.1 RemotEye II Network Adapter

The UPS shall provide either an internal or external support for an internet web/SNMP adapter RemotEye II. for the optional capability of remote or internet system monitoring.

9.1.1 SNMP Ability
RemotEye II (RMTI-EXT-R4) shall provide a SNMP interface for the UPS. The SNMP interface shall provide for easy integration of UPS management into an existing SNMP Network Management System. At any given time, SNMP queries shall be able to poll the RemotEye II agent for the current status of its connected UPS.

9.1.2 HTTP Familiarity

The RemotEye II shall provide a HTTP interface for the UPS to allow easy access of the UPS information from any machine with a web browser. At any time, a network workstation or management station shall be able to open a RemotEye II website. RemotEye II website shall enable the UPS system information to be configured and monitored remotely. RemotEye II shall provide access to 3 java applets for monitoring, event logging, and trend analysis.

9.1.3 Shutdown Capability

The RemotEye II application software shall allow RemotEye II to remotely notify and shutdown selected network servers.

<table>
<thead>
<tr>
<th>Network Adapter/External Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD 188ES-20MHz</td>
</tr>
<tr>
<td>512kB SRAM: 512kB Flash</td>
</tr>
<tr>
<td>Two asynchronous serial ports</td>
</tr>
<tr>
<td>10 BaseT RJ-45 connector</td>
</tr>
<tr>
<td>Manufacturer’s UPS communication protocol</td>
</tr>
<tr>
<td>SNMP over UDP/IP : HTTP over TCP/IP:ARP, RARP, TFTP and ICMP</td>
</tr>
<tr>
<td>MIB : Manufacturer v1.2_MIB : JEM MIB : RFC 1628</td>
</tr>
<tr>
<td>Traffic LED for network : Status LED for status : Power LED for Power</td>
</tr>
</tbody>
</table>

| 2 digit (default setting is Switches 1 and 2 off) |
| Temperature Range: 0 – 40 °C |
| Relative Humidity: 10 – 80 % |
| Power Requirements: 12 VDC ungrounded |
| 2.0 Watts Maximum |
| Dimensions: 5.28”(134mm) x 3.40”(86mm) x 1.10”(27mm) (LxWxH) |
| Weight: 0.38lbs(170g) |
PART 11 - MAINTENANCE BYPASS PANEL

The manufacturer will provide a (T90MBSS06K-S3KS) MBS (Maintenance Bypass Panel) for the UPS.

11.1 Site Installation
The MBS will be available in a floor mount cabinet configuration.

11.2 Electrical Configuration
The MBS can be available in two, three, or four breaker configurations.

11.3 Mechanical Interlock
The MBS has space for a two Kirk-key interlock system.

11.4 External Maintenance Bypass:
- A manually operated maintenance bypass panel can be provided to bypass the power feeding the critical load from inverter to a static switch panel without causing any power interruption.
- Bypass input breaker can supply input power to the UPS module static bypass input. If the system design calls for separate UPS and bypass inputs, a bypass input breaker can be installed on each input.
- UPS maintenance bypass breaker can allow power flow to the load when the UPS is bypassed. This can be a normally open circuit breaker.
- The UPS module output can feed the UPS output isolation breaker.
- Optionally, the two input bypass breaker can be used to feed both the UPS converter input and the UPS bypass input.

PART 12 – NOT USED

PART 13 – NOT USED

PART 14 - EXTENDED SERVICES

The UPS supplier resource may offer:
- Startup Service
- Maintenance Contracts
- Preventive Maintenance Contracts
- Spare-parts kits
- Extended warranty coverage for up to an additional 2 years
- Enhanced warranty contract (24/7 + Holiday coverage)
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 60kVA/54KW UPS Unit

- Load bank testing by Contractor
- Factory witness testing
- Site monitor and power audits

PART 15 – DOCUMENT TRANSMITTALS AND DATA HANDLING

15.1 ACTION SUBMITTALS

15.1.1 Product Data: For each type of product indicated. Include data on features, components, electrical duration ratings, and performance.

15.1.2 Shop Drawings: For UPS. Include plans, elevations, sections, details, and attachments to other work.
 - Detail equipment assemblies and indicate dimensions, weights, components, and location and identification of each field connection. Show operations and termination access, workspace, and clearance requirements; details of control display panels; and battery arrangement.
 - Wiring Diagrams: For power, signal, and control wiring. (one-line with all secondary and monitoring circuit equipment details).
 - Provide heat resection rate data. (consider a 73°F +/- 3°F enclosure space).
 - Provide wet cell storage battery hydrogen evolution into a closed space. State ventilation requirement data. (consider a 73°F +/- 3°F environment).

15.2 INFORMATIONAL SUBMITTALS

15.2.1 Qualification Data: For qualified testing agency provide the test QA results data.

15.2.2 Seismic Qualification Certificates: For UPS equipment, from manufacturer.
 - Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

15.2.3 Manufacturer Certificates: For each product, from manufacturer.

15.2.4 Factory Test Reports: Comply with specified requirements.

15.2.5 Field quality-control reports.
15.2.6 Performance Test Reports: Indicate test results compared with specified performance requirements, and provide justification and resolution of differences if values do not agree.

15.2.7 Warranties: Sample of special warranties.

15.3 CLOSEOUT SUBMITTALS

15.3.1 Operation and Maintenance Data: For UPS units to include in emergency, operation, and systems maintenance manuals.

15.4 MAINTENANCE MATERIAL SUBMITTALS

15.4.1 Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Fuses: Three each for each type and rating.
 - Cabinet Ventilation Filters: Two complete set(s).

15.5 QUALITY ASSURANCE

15.5.1 Power Quality Specialist Qualifications: A registered professional electrical engineer or engineering technician, currently certified by the National Institute for Certification in Engineering Technologies, NICET Level 4, minimum, experienced in performance testing UPS installations and in performing power quality surveys similar to that required in "Performance Testing" Article.

15.5.2 Testing Agency Qualifications: Member company of NETA or an NRTL.
 - Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

15.5.3 Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

15.5.4 UL Compliance: Listed and labeled under UL 1778 by an NRTL.

15.5.5 NFPA Compliance: Mark UPS components as suitable for installation in computer rooms according to NFPA 75.

PART 16 – QUALITY PROGRAM INSTALLATION AND TESTING RESULTS REQUIREMENTS
16.1 BATTERY QUALITY CONTROL

16.1.1 Factory test complete UPS system before shipment. Use actual batteries that are part of final installation battery testing. Include the following:

- Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
- Full-load test.
- Transient-load response test.
- Overload test.
- Power failure test.

16.1.2 Observation of Test: Give 14 days' advance notice of tests and provide opportunity for Owner's representative to observe tests at Owner's choice. WSU site test demonstrations shall be conducted during the Monday through Friday normal work week between 0830-1700 hours. WSU will observe testing. The seller shall submit the QA program test plan for WSU acceptance.

16.1.3 Report test results. Include the following data:

- Description of input source and output loads used. Describe actions required to simulate source load variation and various operating conditions and malfunctions.
- List of indications, parameter values, and system responses considered satisfactory for each test action. Include tabulation of actual observations during test.
- List of instruments and equipment used in factory tests.

16.2 FIELD QUALITY CONTROL

16.2.1 Testing Agency: Engage a qualified testing agency to perform tests and inspections.

16.2.2 Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

16.2.3 Perform tests and inspections.

- Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

16.2.4 Tests and Inspections:

- Comply with manufacturer's written instructions.
• Inspect interiors of enclosures, including the following:
 o Integrity of mechanical and electrical connections.
 o Component type and labeling verification.
 o Ratings of installed components.
• Inspect batteries and chargers according to requirements in
 NETA Acceptance Testing Specifications.
• Test manual and automatic operational features and system protective and
 alarm functions.
• Test communication of status and alarms to remote monitoring equipment.
• Load the system using a variable-load bank to simulate kilovolt amperes,
 kilowatts, and power factor of loads for the UPS unit's rating. Use
 instruments calibrated within the previous six months according to NIST
 standards.
 o Simulate malfunctions to verify protective device operation.
 o Test duration of supply on emergency, low-battery voltage
 shutdown, and transfers and restoration due to normal
 source failure.
 o Test harmonic content of input and output current less than
 25, 50, and 100 percent of rated loads.
 o Test output voltage under specified transient-load
 conditions.
 o Test efficiency at 50, 75, and 100 percent of rated loads.
 o Test remote status and alarm panel functions.
 o Test battery-monitoring system functions.

16.2.5 Panel mount bolted restraint tests and inspections shall include the following:
 o Inspect type, size, quantity, arrangement, and proper installation of
 mounting or anchorage devices.

16.2.6 The UPS system will be considered defective if it does not pass tests and
 inspections.

16.2.7 Record of Tests and Inspections: Maintain and submit documentation
 of tests and inspections, including references to manufacturers’ written
 instructions and other test and inspection criteria. Include results of
 tests, inspections, and retests.

16.2.8 Prepare test and inspection reports.

16.3 PERFORMANCE TESTING
16.3.1 Engage the services of a qualified power quality specialist to perform tests and activities indicated for each UPS system.

16.3.2 Monitoring and Testing Schedule: Perform monitoring and testing in a single 10-day period scheduled for the: 60KVA/54 KW C.S. Mott Center Building,
 - Schedule monitoring and testing activity with Owner, through Architect, with at least 14 days' advance notice.
 - Schedule monitoring and testing after Substantial Completion, when the UPS is supplying power to its intended load.

16.3.3 Monitoring and Testing Instruments: Three-phase, recording, power monitors. Instruments shall provide continuous simultaneous monitoring of electrical parameters at UPS input terminals and at input terminals of loads served by the UPS. Instruments shall monitor, measure, and graph voltage current and frequency simultaneously and provide full-graphic recordings of the values of those parameters before and during power-line disturbances that cause the values to deviate from normal beyond the adjustable threshold values. Instruments shall be capable of recording either on paper or on magnetic media and have a minimum accuracy of plus or minus 2 percent for electrical parameters. Parameters to be monitored include the following:
 - Current: Each phase and neutral and grounding conductors.
 - Voltage: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
 - Frequency transients.
 - Voltage swells and sags.
 - Voltage Impulses: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
 - High-frequency noise.
 - Radio-frequency interference.
 - THD of the above currents and voltages.
 - Harmonic content of currents and voltages above.

16.3.4 Monitoring and Testing Procedures[for Each Test Period]:
 - Exploratory Period: For the first [two] <Insert number> days[of the first scheduled monitoring and testing period], make recordings at various circuit locations and with various parameter-threshold and sampling-interval settings. Make these measurements with the objective of identifying optimum UPS, power system, load, and instrumentation setup conditions for subsequent test and monitoring operations.
 - Remainder of Test Period: Perform continuous monitoring of at least two circuit locations selected on the basis of data obtained during exploratory period.
 - Set thresholds and sampling intervals for recording data at values selected to optimize data on performance of the UPS
for values indicated, and to highlight the need to adjust, repair, or modify the UPS, distribution system, or load component that may influence its performance or that may require better power quality.

o Perform load and UPS power source switching and operate the UPS on generator power during portions of test period according to directions of Owner's power quality specialist.

o Operate the UPS and its loads in each mode of operation permitted by UPS controls and by the power distribution system design.

o Using loads and devices available as part of the facility's installed systems and equipment[and a temporarily connected portable generator set], create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.

o Using temporarily connected resistive/inductive load banks, create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.

o Make adjustments and repairs to UPS, distribution, and load equipment to correct deficiencies disclosed by monitoring and testing and repeat appropriate monitoring and testing to verify success of corrective action.

16.3.5 Coordination with Specified UPS Monitoring Functions: Obtain printouts of built-in monitoring functions specified for the UPS and its components in this Section that are simultaneously recorded with portable instruments in this article.

- Provide the temporary use of an appropriate PC and printer equipped with required connections and software for recording and printing if such units are not available on-site.

- Coordinate printouts with recordings for monitoring performed according to this article, and resolve and report any anomalies in and discrepancies between the two sets of records.

16.3.6 Monitoring and Testing Assistance by Contractor:

- Open UPS and electrical distribution and load equipment and wiring enclosures to make monitoring and testing points accessible for temporary
monitoring probe and sensor placement and removal as requested.

- Observe monitoring and testing operations; ensure that UPS and distribution and load equipment warranties are not compromised.
- Perform switching and control of various UPS units, electrical distribution systems, and load components as directed by power quality specialist. Specialist shall design this portion of monitoring and testing operations to expose the UPS to various operating environments, conditions, and events while response is observed, electrical parameters are monitored, and system and equipment deficiencies are identified.
- Make repairs and adjustments to the UPS and to electrical distribution system and load components, and retest and repeat monitoring as needed to verify validity of results and correction of deficiencies.
- Engage the services of the UPS manufacturer's factory-authorized service representative periodically during performance testing operations for repairs, adjustments, and consultations.

16.3.7 Documentation: Record test point and sensor locations, instrument settings, and circuit and load conditions for each monitoring summary and power disturbance recording. Coordinate simultaneous recordings made on UPS input and load circuits.

16.3.8 Analysis of Recorded Data and Report: Review and analyze test observations and recorded data and submit a detailed written report. Include the following in [each]report:
- Description of corrective actions performed during monitoring and survey work and their results.
- Recommendations for further action to provide optimum performance by the UPS and appropriate power quality for non-UPS loads. Include a statement of priority ranking and a cost estimate for each recommendation that involves system or equipment revisions.
- Copies of monitoring summary graphics and graphics illustrating harmonic content of significant voltages and currents.
- Copies of graphics of power disturbance recordings that illustrate findings, conclusions, and recommendations.
- Recommendations for operating, adjusting, or revising UPS controls.
- Recommendation for alterations to the UPS installation.
- Recommendations for adjusting or revising generator-set or automatic transfer switch installations or their controls.
- Recommendations for power distribution system revisions.
- Recommendations for adjusting or revising electrical loads, their connections, or controls.

16.3.9 Interim and Final Reports: Provide an interim report at the end of each test period and a final comprehensive report at the end of final test and analysis period.
16.4 DEMONSTRATION

16.4.1 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the UPS, as well as authenticate the initiation of the Warranty period.

End Text
TOSHIBA Static Uninterruptible Power Supply Data Sheets

I. State model number data: each cabinet, (include dimensions and weight data)
 a. UPS 60kVA/54 kW power Electronics cabinet: T90S3S06KS6XSN
 b. Battery Storage Cabinet: T90-06K54EN-VC
 c. Maintenance Bypass Switch Cabinet: T90BMSS06K-S3KS
 d. Remote Communication Module Features: RMTI-EXT-R4
 e. UPSTARTUP100G9 Services (Warranty Provision)

II.

<table>
<thead>
<tr>
<th>Input Power Parameter Data Statements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage/Wiring Features</td>
</tr>
<tr>
<td>Voltage Range/Variation</td>
</tr>
<tr>
<td>Power Factor</td>
</tr>
<tr>
<td>Current THD Harmonics</td>
</tr>
<tr>
<td>Frequency/Variation</td>
</tr>
<tr>
<td>Output Power Parameter Data Statements:</td>
</tr>
<tr>
<td>Voltage/Wiring Features</td>
</tr>
<tr>
<td>Frequency/Variation</td>
</tr>
<tr>
<td>Voltage Regulation</td>
</tr>
<tr>
<td>Power Factor: LAG</td>
</tr>
<tr>
<td>Voltage THD</td>
</tr>
<tr>
<td>Overload, Inverter 120sec/60sec</td>
</tr>
<tr>
<td>Overload, Bypass</td>
</tr>
</tbody>
</table>

III. State environment operating parameter requirements:
 - Temperature
 - Humidity
 - Noise
 - Heat rejection
 - Efficiency ratings data
 - Seismic
IV. System Topology: State UPS Description Data: ___________________

V. State UPS battery features and operation life features.

VI. State UPS monitoring, alarm, control interface switch features and signal handling provision.

VII. State UPS international and national standards compliance adherence data (e.g: UL ISO ANSI IEEE, other NFPA-NEC)

VIII. State UPS warranty duration and features.

END OF SECTION 263353
612 - SCOTT HALL BUILDING
WSU PROJECT NO. 612-248862
ELECTRICAL RELIABILITY UPGRADES
BID PACKAGE NO. 6

Project Specifications

Prepared for:
Wayne State University

For Bids
01/21/2015

Prepared by
Wayne State University
Scott Hall Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

Scott Hall Building

Building No. 612
540 E. Canfield
Detroit, MI 48201

Drawing List

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>Sheet Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-0</td>
<td>Cover Sheet</td>
</tr>
<tr>
<td>G-1</td>
<td>General Notes & Design Criteria</td>
</tr>
<tr>
<td>E-0</td>
<td>Basement Floor Plan</td>
</tr>
<tr>
<td>E-1</td>
<td>First Floor Plan</td>
</tr>
<tr>
<td>E-2</td>
<td>Second Floor Plan</td>
</tr>
<tr>
<td>E-3</td>
<td>Third Floor Plan</td>
</tr>
<tr>
<td>E-4</td>
<td>Fourth Floor Plan</td>
</tr>
<tr>
<td>E-5</td>
<td>Fifth Floor Plan</td>
</tr>
<tr>
<td>E-6</td>
<td>Sixth Floor Plan</td>
</tr>
<tr>
<td>E-7</td>
<td>Seventh Floor Plan</td>
</tr>
<tr>
<td>E-8</td>
<td>Eighth Floor Plan</td>
</tr>
<tr>
<td>E-9</td>
<td>Ninth Floor Plan</td>
</tr>
<tr>
<td>E-101</td>
<td>Electrical One Line Diagram</td>
</tr>
<tr>
<td>E-102</td>
<td>UPS Distribution Riser Diagram</td>
</tr>
<tr>
<td>E-103</td>
<td>Typical Electrical Details</td>
</tr>
</tbody>
</table>

Specifications

Table of Contents

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Division / Section Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Division 1 – General Requirements</td>
</tr>
<tr>
<td>012100</td>
<td>Allowances</td>
</tr>
<tr>
<td>017823</td>
<td>Operation and Maintenance Data</td>
</tr>
</tbody>
</table>
Wayne State University
Scott Hall Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

Division 3 – Concrete

031000 Concrete Formwork
033000 Cast-In-Place Concrete

Division 5 – Metals

050940 Post Installed Anchors

Division 7 – Thermal and Moisture Protection

078413 Penetration Firestopping

Division 9 – Finishes

099100 Painting

Division 26 – Electrical

260510 Electrical Design and Equipment
260519 Low-Voltage Electrical Power Conductors and Cables
260526 Grounding and Bonding for Electrical Systems
260529 Hangers and Supports for Electrical Systems
260533 Raceways and Boxes for Electrical Systems
260544 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
260553 Identification for Electrical Systems
262200 Power Transformer
320006
Wayne State University
Scott Hall Building
Electrical Reliability Upgrades
January 21, 2015 – For Bids

<table>
<thead>
<tr>
<th>262416</th>
<th>Panelboards</th>
</tr>
</thead>
<tbody>
<tr>
<td>262726</td>
<td>Wiring Devices</td>
</tr>
<tr>
<td>262813</td>
<td>Fuses</td>
</tr>
<tr>
<td>262816</td>
<td>Enclosed Switches and Circuit Breakers</td>
</tr>
<tr>
<td>263353</td>
<td>Static Uninterruptible Power Supply</td>
</tr>
</tbody>
</table>
PART 1 - GENERAL

1.1 SUMMARY

A. Selected labor are shown and specified in the Contract Documents by allowances. Allowances have been established in lieu of additional requirements and to defer selection of actual labor to a later date.

1. Cash Allowances: Base bid shall include an allowance to cover costs associated with premium time associated with overtime work in amount of $5,000.00. The allowance expenditure must be accounted for and approved in advance by WSU during the construction phase of the project, unused allowances will be returned to the University.

B. Type of allowance is "Lump-sum" cash allowance.

1.4 SUBMITTALS

A. Submit in writing to the WSU Rep in advance allocation of expected monies required to perform pre-approved work.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 – EXECUTION (NOT APPLICABLE)

3.1 SCHEDULE OF CASH ALLOWANCES

END OF SECTION 012100
SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 1. Operation and maintenance documentation directory.
 2. Emergency manuals.
 3. Operation manuals for systems, subsystems, and equipment.
 4. Product maintenance manuals.
 5. Systems and equipment maintenance manuals.

1.3 DEFINITIONS
 A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
 B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS
 A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 1. WSU representative will comment on whether content of operations and maintenance submittals are acceptable.
 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
 B. Format: Submit operations and maintenance manuals in the following format:
 a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
b. Enable inserted reviewer comments on draft submittals.

2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Architect, through Construction Manager, will return two copies.

C. Initial Manual Submittal: Submit draft copy of each manual at least 30 days before commencing demonstration and training. Architect and Commissioning Authority will comment on whether general scope and content of manual are acceptable.

D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect and Commissioning Authority will return copy with comments.

1. Correct or revise each manual to comply with Architect's and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's and Commissioning Authority's comments and prior to commencing demonstration and training.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:

1. List of documents.
2. List of systems.
3. List of equipment.
4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents.
2.2 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:

1. Title page.
2. Table of contents.

B. Title Page: Include the following information:

1. Subject matter included in manual.
2. Name and address of Project.
3. Name and address of Owner.
4. Date of submittal.
5. Name and contact information for Contractor.
6. Name and contact information for Construction Manager.
7. Name and contact information for Architect.
8. Name and contact information for Commissioning Authority.
9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
10. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.

1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.

1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.
F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.

1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.

2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.

3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.

5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:
 1. Type of emergency.
 2. Emergency instructions.
 3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 1. Fire.
 2. Flood.
 5. Power failure.
 7. System, subsystem, or equipment failure.
8. Chemical release or spill.

C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner's operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:

1. Instructions on stopping.
2. Shutdown instructions for each type of emergency.
3. Operating instructions for conditions outside normal operating limits.
4. Required sequences for electric or electronic systems.
5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:

2. Performance and design criteria if Contractor has delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:

1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:

1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
OPERATION AND MAINTENANCE DATA

4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.5 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Product Information: Include the following, as applicable:

1. Product name and model number.
2. Manufacturer's name.
3. Color, pattern, and texture.
5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:

1. Inspection procedures.
2. Types of cleaning agents to be used and methods of cleaning.
3. List of cleaning agents and methods of cleaning detrimental to product.
4. Schedule for routine cleaning and maintenance.
5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:

1. Standard maintenance instructions and bulletins.
2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
3. Identification and nomenclature of parts and components.
4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:

1. Test and inspection instructions.
2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.

1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

1. Include procedures to follow and required notifications for warranty claims.
PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.

1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.

F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

1. Do not use original project record documents as part of operation and maintenance manuals.
2. Comply with requirements of newly prepared record Drawings in Section 017839 "Project Record Documents."

END OF SECTION 017823
SECTION 031000 – CONCRETE FORMWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the design, installation and removal of forms for cast-in-place concrete.

B. Related Sections include the following:
 1. Division 3 Section “Cast-In-Place Concrete.”

C. Division of Work:
 1. In accordance with the General Conditions, Contractor is responsible for dividing the Work among the Subcontractors and Suppliers and for delineating the work to be performed by specific trades. The following are suggestions as to how the Work may be divided. This is not a complete list of all the work:
 a. Mechanical, Electrical and Plumbing Trades: Supply, locate and install premanufactured items including inserts, sleeves, and other embedded items required by those respective trades.
 b. Contractor: Coordinate location of mechanical, electrical and plumbing inserts, embedded parts, openings and recesses with respective trades.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following:
 1. ACI - American Concrete Institute:
 b. 301 - Standard Specifications for Structural Concrete for Buildings.
 c. 347R - Guide to Formwork for Concrete.

1.4 DESIGN AND PERFORMANCE REQUIREMENTS

A. Form Construction:
 1. Provide required forms, shores, bracing, breast timbers, form ties, and accessories in sufficient quantities so as not to delay the Work, and of strength to support vertical and horizontal loads to which they are subjected.
 2. Deflection: Maximum deflection of forms shall be 1/240 of span or 1/4-inch, whichever is less.

1.5 SUBMITTALS

A. Manufacturer's Literature: For form release agent.
1.6 QUALITY ASSURANCE

A. Design: The design and engineering of formwork, as well as its construction, shall be the responsibility of Contractor.

B. Notifications: Notify special inspector at least 24 hours in advance of placing concrete.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Formwork Facing Materials:
 1. Smooth Form Finish Areas:
 a. Locations: All locations unless otherwise noted.
 b. The form facing material shall produce a smooth, hard, uniform surface on the concrete.
 c. Form facing materials may be plywood, tempered concrete-form-grade hardboard, metal, plastic, paper; or other approved material capable of producing the desired finish.
 d. Facing materials shall be supported by studs or other backing capable of preventing deflections in excess of those specified herein.
 e. Material with damaged surfaces, worn edges, patches, dents or other defects which will impair the texture of the concrete surface shall not be used.

B. Chamfer Strips:
 1. Wood, metal, rubber, or PVC.
 2. Sizes as indicated, 3/4-inch x 3/4-inch minimum.

C. Form Release Agent:
 1. Products for General Use: Magic Kote by Symons, Crete-lease 727 by Cresset Company; or equal.
 2. Chemically neutral agent in hydrocarbon solvent that will effectively prevent absorption of moisture and prevent bond with the concrete.

PART 3 - EXECUTION

3.1 FORMWORK CONSTRUCTION

A. General:
 1. Align and secure joints to avoid offsets.
 2. Provide chamfered strips in exposed corners of exterior corners, internal corners and for similar conditions throughout the Work.
 3. The arrangement of facing material shall be orderly and symmetrical with the number of seams kept to the practical minimum.
 4. Retighten forms after concrete placement if required to eliminate mortar leaks.
 a. Securely brace temporary openings and set tightly to forms to prevent loss of concrete mortar.
 b. Locate temporary openings on forms at inconspicuous locations.
B. Openings and Embedded Items:
 1. Set and build into the work anchorage devices and other embedded items required for work that is attached to, or supported by, cast-in-place concrete.
 2. Coordinate work of other Sections and cooperate with trade involved in forming and setting openings, slots, recesses, chases, sleeves, bolts, anchor and other inserts.
 3. Use setting drawings, diagrams, instructions and directions provided by Suppliers of the respective items.
 4. Do not perform work unless specifically indicated on Drawings or reviewed prior to installation.

C. Cleaning:
 1. Clean forms as erection proceeds, to remove foreign matter.
 2. Remove cuttings, shavings and debris from within forms.
 3. Flush with water or use compressed air to remove remaining foreign matter.
 4. Ensure that water and debris drain to exterior through clean-out ports.
 5. When forms are extended for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close joints.
 6. Thoroughly clean embedded waterstops and concrete surfaces prior to constructing forms for the next pour.

D. Applying Form Release Agent:
 1. Temperature of release agent and surfaces to which it is applied shall be a minimum of 70 degrees F.
 2. Apply by spray only.
 3. Uniformly coat surfaces with a thin film.
 4. Wipe off excess with clean towels.
 5. Apply in accordance with Manufacturer's recommendations.
 6. Do not allow to stand in puddles in the forms and prevent bonding of concrete at construction joints.

E. Provisions for Form Removal:
 1. Fabricate forms for easy removal without hammering or prying against the concrete surfaces.
 2. Kerf wood inserts for forming keyways, reglets, recesses and the like to prevent swelling and for easy removal.

3.2 FORM AND SUPPORT REMOVAL

A. Forms and supports shall remain in place for not less than the following periods of time:
 1. Housekeeping Pad: 12 to 24 hours.

B. In any event, do not remove forms and supports until concrete in walls has reached 30% of design strength, and in structural members and slabs has reached 75% of design strength.

C. Special precautions shall be taken when concrete is placed in average temperatures of 50 degrees F or below to ensure that forms are not removed before design strengths specified above are met.

D. Remove forms in such a manner and at such times as required to ensure safety of persons involved and so as to protect and maintain structural integrity of members.
E. Particular care shall be taken in removing forms to minimize damage to concrete surfaces; use crush or wrecking plates as necessary.

F. Whenever the formwork is removed, cure the exposed concrete as specified under Division 3 Section “Cast-in-Place Concrete.”

3.3 FIELD QUALITY CONTROL

A. Inspect and check completed formwork, shoring and bracing to ensure that work is in accordance with formwork design, and that supports, fastenings, wedges, ties and parts are secure.

B. Form Surface Repairs:
 1. Repair surfaces of forms to be reused in the work.
 2. Split, frayed, delaminated or otherwise damaged form facing material will not be acceptable.
 3. Apply new form release agent to new concrete contact form surfaces.
 4. Do not use patched forms for exposed concrete surfaces.

END OF SECTION 031000
SECTION 033000 – CAST IN PLACE CONCRETE

PART 1 – GENERAL

1.1 SUMMARY

A. Work Included: Cast in place concrete.
 1. Housekeeping pads.

1.2 QUALITY ASSURANCE

REFERENCE STANDARDS

A. Comply with the latest editions of the following design guides and standards:
 1. ACI 301 “Specifications for Structural Concrete for Buildings”
 2. ACI 302 “Guide for Concrete Floor and Slab Construction”
 3. ACI 304 “Recommended Practice for Measuring, Mixing, Transporting, and Placing Concrete:”
 4. ACI 315 “Details and Detailing of concrete Reinforcement”
 5. ACI 318 “Building Code Requirements for Structural Concrete”
 6. ACI 347 “Recommended Practice for Concrete Formwork”

1.3 SUBMITTALS

A. Shop Drawings: Submit Shop Drawings for fabrication, bending, and placement of concrete reinforcement. Show bar bending schedules, stirrup spacing, diagrams of bent bars, and arrangements of concrete reinforcement.

B. Mix Designs: Submit proposed mix designs for concrete at least 15 days before start of concreting. Submittal shall include: cement content and type, admixture content and type, aggregate source and gradation, water content, air content, slump, yield, and documentation of average strength by field experience method or laboratory prepared trial mixtures in accordance with ACI 318 Article 4.3.

C. Product Data: Submit data and installation instructions for proprietary materials.

D. Material Certificates: Submit materials certificates certifying that each material complies with Specifications.

1.4 TESTING SERVICES

A. Owner will engage a testing laboratory acceptable to the Architect-Engineer to perform material evaluation tests and for quality control during placement.
B. Sample and test concrete for quality control during placement as follows:
 1. Compressive Strength Test: ASTM C39, one set of six cylinders for each 50 cubic yards or
 fraction thereof, of each concrete class placed in any one day, two lab specimens tested at 7
 days, two lab specimens tested at 28 days and two specimens retained in reserve for later
 testing if required.

C. Test Reports
 1. Forward results to Architect-Engineer and Contractor on same day that tests are made.
 2. Reports of compressive strength tests shall contain the general information of project
 identification name and number, date of concrete placement, name of Contractor, name of
 concrete supplier, truck number and delivery ticket number, name of concrete testing
 agency, concrete type and class, name of individual making specimen, location of concrete
 batch in structure, design compressive strength at 28 days, concrete mix proportions and
 materials; and the specific information of compressive strength and type of break for both 7-
 day and 28-day tests.
 3. Field reports of concrete inspection shall contain general information noted above, plus
 cylinder numbers.

D. Additional Testing
 1. Testing agency shall make additional test of in-place concrete when test results indicate
 specified concrete strengths and other characteristics have not been attained in the structure.
 2. Testing agency shall conduct tests to determine adequacy of concrete cored cylinders
 complying with ASTM C42 or by other methods acceptable to Architect-Engineer.
 3. Contractor shall pay for such tests conducted, and any other additional testing required, if
 concrete testing confirms specified strengths have not been met.

1.5 JOB CONDITIONS

A. Store materials so as to ensure preservation of their quality and fitness for the Work. Store
 reinforcement and formwork in a manner to prevent damage and accumulation of dirt.

B. Contractor shall be responsible for correction of concrete work which does not conform to
 specified requirements, including strength, tolerances and finishes. Correct deficient concrete as
 directed by Architect-Engineer.

PART 2 – PRODUCTS

2.1 MATERIALS

A. Formwork
CAST IN PLACE CONCRETE

1. Exposed Concrete: Unless otherwise shown or specified, construct formwork for concrete surfaces, which will be exposed to view in the completed project, with form plywood, metal or other acceptable panel-type material, to provide continuous, straight, smooth exposed surfaces. Furnish in largest practicable sizes to minimize number of joints and to conform to joint system show on Drawings. Provide form material with sufficient thickness to withstand pressure of newly-placed concrete without bow or deflection.

B. Form Coatings: Commercial formulation form-coating compounds shall not bond with, stain, nor adversely affect concrete surfaces, and shall not impair subsequent treatments of concrete surfaces requiring bond or adhesion, nor impede wetting of surfaces to be cured with water or curing compound.

C. Reinforcement
 1. Deformed bars: ASTM A615, Grade 60.
 3. All chairs, spacers, clips, wire anchors and related items necessary to accurately space and secure reinforcement.
 4. Additional bars, if required, to anchor or space reinforcement.
 5. Chairs shall be plastic booted at points of bearing on forms for exposed concrete.
 6. Minimum 16-gauge annealed tie wire, ASTM A82.

D. Cement: ASTM C150, Type I or Type II.

E. Aggregates: ASTM C33 and as herein specified.
 1. Fine Aggregate: Clean, sharp, natural sand free from loam, clay, lumps or other deleterious substances with less that 10% passing the #100 sieve and less than 3% passing the #200 sieve.
 2. Coarse Aggregate: Clean, uncoated, processed aggregate containing no clay, mud, loam or foreign matter, as follows:
 a. Crushed stone: Processed from natural rock or stone for concrete slabs meeting MDOT 6AA, with a ¾ inch maximum aggregate size.
 b. Clean, sharp, natural or processed gravel, or, crushed stone, free from loam, clay, lumps, or other deleterious substances for footings and miscellaneous concrete.
 c. Maximum aggregate Size: Pads – ¾”.

F. Water: Clean, fresh, and potable.

G. Water Reducing Admixture: ASTM C494, Type A.

H. Non Corrosive, Non Chloride Accelerator: ASTM C494, Type C or E.

I. Prohibited Admixtures: Calcium chloride, thiocyanates. Admixtures containing more than 0.05% chloride ions are not permitted.
J. Evaporation Retarder: Confilm by Master Builders, or accepted equal.

K. Curing Sheet Materials: ASTM C171, including waterproof paper, polyethylene film or polyethylene coated burlap.

L. Liquid Membrane Curing/Sealing Compound: Masterkure by Master Builders or accepted equal.

2.2 PROPORTIONING AND MIX DESIGN

A. Prepare design mixes for concrete. Use independent testing facility acceptable to Architect-Engineer for preparing and reporting proposed mix designs.

B. Where the concrete production facility can establish the uniformity of its production for concrete of similar strength and materials based on recent test data, the average strength used as a basis for determining mix design proportions shall exceed the specified design strength by the requirements of ACI 318, section 4.3.2 or ACI 301, Section 3.9.

C. Concrete Quality

<table>
<thead>
<tr>
<th>Location</th>
<th>Required 28 day Compressive Strength</th>
<th>Maximum Water/Cement Ratio</th>
<th>Air-Content</th>
<th>Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housekeeping Pad</td>
<td>3,000 psi</td>
<td>0.55</td>
<td>-</td>
<td>147 – 153 pcf</td>
</tr>
</tbody>
</table>

D. Slump

1. Housekeeping Pad: 3” to 5”.

E. Ready Mix Concrete: ASTM C94.

F. The quantity of coarse aggregate in pounds must be in the range of 1.25 to 1.5 times the quantity of fine aggregate in pounds.

G. Pumping of concrete is permitted only if mix designs specifically prepared and used previously for pumping are submitted. Pumpline shall have a 5-inch minimum inside diameter and shall be used with 5-inch pumps.
1.3 REINFORCING FABRICATION

A. Fabricate bars to required lengths, shapes and bends. Do not rebend or straighten reinforcement in a manner that shall weaken the material.

1.4 FORMWORK

A. Design formwork to support vertical and lateral loads that might be applied until such loads can be supported by concrete structure.

PART 3 – EXECUTION

3.1 INSPECTION

A. Examine conditions under which concrete shall be placed. Do not proceed with work until all unsatisfactory conditions are corrected.

3.2 NOTIFICATION

A. Notify Architect-Engineer 24 hours before anticipated time of completion of reinforcement in any section.

B. Do not place concrete until reinforcement has been observed and corrections, if any, made.

3.3 FORMWORK INSTALLATION

A. Erect, brace, and maintain formwork to support vertical and lateral loads.

B. Construct forms to sizes, lines and dimensions shown to obtain accurate alignment, location, grades, level and plumb work in finished structure.

C. Provide for openings, offsets, keys and other features required in work. Accurately position and support items.

D. Solidly butt joints and provide backup at joints to prevent leakage of cement paste.

E. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces.

F. Kerf wood inserts for forming keys and the like to prevent swelling and for easy removal.

G. Provide openings in concrete form to accommodate work of other trades. Determine size and location of openings, recesses and chases from trades providing such.
H. Cleaning and Tightening: Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt or other debris just before concrete is placed. Retighten forms after concrete placement if required to eliminate concrete leaks.

I. Reuse of Forms: Clean and repair surfaces of forms to be reused in the work. Split, frayed, delaminated, or otherwise damaged form facing material is not acceptable. Apply new form coating compound material. When forms are reused for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close all joints. Align and secure joints to avoid offsets.

3.4 REINFORCEMENT PLACING

A. Clean reinforcement of loose rust, mill scale, earth, ice and other materials which reduce or destroy bond with concrete.

B. Accurately position, support and secure reinforcement against displacement by formwork, construction or concrete placement operations. Locate and support reinforcement by metal chairs, runners, bolsters, spacers and hangers as required. Do not use brick.

C. Place reinforcement to obtain at least the minimum coverage’s for concrete protection.

D. Arrange, space and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.

E. Lap bar splices as indicated. Stagger splices in adjacent bars. Wire tie all splices.

3.5 WELDED WIRE FABRIC REINFORCEMENT PLACEMENT

A. Place welded wire fabric one-third of the slab thickness below top surface of slab.

B. Place flat sheets in as long lengths as practical. Lap adjoining sheets at least one full mesh. Offset laps to prevent continuous laps in either direction.

C. Do not continue welded wire fabric through any control joints or construction joints for slabs on grade.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, reinforcing steel and items to be embedded or cast in the concrete.
B. Notify other trades to permit installation of their work. Cooperate with other trades in setting such work as required.

C. Install anchor bolts and sleeves.

D. Deposit concrete continuously or in layers of such thickness that no concrete shall be placed on concrete which has hardened sufficiently to cause formation of seams or planes of weakness within section. Provide construction joints if section cannot be placed continuously.

E. Deposit concrete as nearly as practicable to its final location to avoid segregation caused by rehandling or flowing.

F. Maximum drop of concrete shall not exceed 5 feet. Use hopper and trunk for greater drops.

G. Contractor shall be responsible for controlling the proper placing of all embedded pipe, conduit and other embedded items.

H. Contractor shall be responsible for finishing of all concrete slabs to proper elevations to insure that all surface moisture will drain freely to floor drain, and that no puddle areas exist. During finishing operation, Contractor shall pay particular attention to this criterion, and shall make all efforts to obtain this. Any cost of corrections to provide for this positive drainage will be the responsibility of Contractor.

3.7 CONSOLIDATION

A. Consolidate placed concrete by mechanical vibrating equipment supplemented by hand spading, rodding or tamping.

B. Do not use vibrators to transport concrete inside formwork.

C. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing segregation of mix.

D. Do not allow vibrator to come in contact with form.

3.8 SURFACE FINISHES

A. Finish of Formed Surfaces:
 1. Smooth Form Finish: For formed concrete surfaces exposed to view. This is as cast concrete surface obtained with selected form facing material, arranged orderly and symmetrically with a minimum of seams. Repair and patch defective areas with fins or other projections completely removed and smoothed. Lightly rub all exposed surfaces to
achieve a uniform appearance. Or Lightly sandblast to expose fine aggregate with occasional exposure of coarse aggregate and to make the color uniform.

1.9 CURING AND PROTECTION

A. Concrete shall be protected from premature drying, excessively hot or cold temperature, and mechanical injury according to provisions of ACI 301, Chapter 12. During placing, all concrete flatwork exposed to or subject to rapid evaporation of moisture under drying conditions (including hot weather, low humidity, wind and/or sunlight) shall be protected immediately following screeding with evaporation retarder applied in accordance with recommendations of manufacturer. Application shall precede and shall be in addition to curing specified below.

B. Concrete shall be maintained in a continuously moist condition for at least 7 days after placement. Curing shall begin as soon as possible after concrete has been placed and finished. Materials and methods of curing shall be submitted to Architect-Engineer for review and approval.

C. Curing and Protection: Surfaces not in contact with forms and surfaces in contact with forms for less than seven days.
 1. Curing shall be by water curings, application of liquid membrane curing/sealing compound or by application of sheet curing materials. Curing compounds shall be applied in accordance with manufacturer’s recommendations. Liquid membrane curing compound used on floor slabs receiving applied finish flooring shall be guaranteed by the manufacturer, in writing, not to impair bonding of adhesive.
 2. For slabs use a curing treatment of water curing, curing sheet materials, or by applying and removing curing/sealing compound. The curing compounds must be applied immediately after final finishing. For curing by water curing or curing sheet materials, the concrete must be continually moist-cured for at least 7 days. Curing shall begin immediately after finishing.

1.17 REPAIR OF SURFACES

A. Contractor shall be responsible for cost of repairing defects.

B. Repair defective pad areas as follows:
 1. Correct flatness and levelness defects by grinding or removal and replacement of slab. Patching of low spots will not be permitted.
 2. For cracks less than 1/32 inch, no repairs are required. For cracks greater than 1/32 inch, use crack repair material. For cracks over 1/8 inch, fill crack with oven-dried sand prior to application of crack repair material, as recommended by manufacturer. Contractor also has option to remove and rebuild areas of cracking. Mask cracks to limit crack repair material to crack only.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the furnishing and installation of post-installed anchors.

1.3 REFERENCES

A. Except as herein specified or as indicated on the Drawings, the work of this Section shall comply with the following pertinent provisions:

1. ASTM:
 a. A36 - Carbon Structural Steel.
 b. A198 - Steel Bolting Materials for High-Temperature Service.
 d. A307 - Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength.
 e. A510 - General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel.
 g. B633 - Electrodeposited Coatings of Zinc on Iron and Steel.
 h. E488 - Strength of Anchors in Concrete and Masonry Elements.
 i. E1512 - Testing Bond Performance of Bonded Anchors.
 j. F436 - Hardened Steel Washers.
 k. F844 - Washers, Steel, Plain (Flat), Unhardened for General Use.

2. ACI 318-02, Appendix D - Anchoring to Concrete.

1.4 SUBMITTALS

A. Product Data: For All Members to be Furnished:

1. Base material being fastened to.
2. Anchor embedment depth in base material.

1.5 QUALITY ASSURANCE

A. Installation Personnel Qualifications:

1. Trained and experienced in the type of work being performed.
2. Knowledgeable of the specific manufacturer’s requirements for quality installation of post-installed anchors.

B. Inspection of Post-Installed Anchor Installation: Field instruction and inspection during the installation process by Manufacturer’s authorized field representative shall take place at the discretion of Engineer. The General Contractor may utilize such instruction and inspection at any
time without the authorization of Engineer. Any costs which may be associated with such services shall be paid for by the General Contractor.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Post-Installed Anchor Material:
 1. Anchors that resist loads through mechanical friction or keying forces:
 a. Expansion Anchors:
 1) Wedge style anchor.
 2) Capable of sustaining an ultimate load of 6 times the imposed load capacity in unit masonry and 4 times the imposed load capacity in concrete when tested in accordance with ASTM E488.
 3) Hilti Kwik Bolt III; Powers Power-Stud; or equal.
 4) Stainless steel in accordance with ASTM F593.
 b. Sleeve Anchors:
 1) Expanding sleeve style anchor.
 2) Hilti LLC or LSL heavy duty sleeve anchors; Powers Lok/Bolt sleeve anchor; or equal.
 3) Hex, acorn, round or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 5) Dry Areas: Mild steel, galvanized in accordance with ASTM B633.
 c. Undercut Anchors:
 1) Expanding sleeve, self-undercutting wedge style anchor.
 2) Hilti HDA Undercut Anchors; Powers Power-Bolt Anchors; or equal.
 3) Hex or flat head anchor or threaded anchor with hex nut as situation requires or as indicated on the Drawings.
 4) Submerged or Subject to Becoming Wet: Stainless steel in accordance with ASTM F593.
 2. Anchors that resist loads through an injectable chemical adhesive:
 a. In Concrete: Hilti HIT HY-150, HIT-ICE, HIT-T2, HIT RE 500 and HSE 2421; Powers Power-Fast; or equal.
 b. Anchored Material: Deformed reinforcing bars as indicated on the Drawings.
 c. Bonding Strength: Tested in accordance with ASTM E1512.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install Post-Installed Anchors:
 1. In strict accordance with the installation instructions supplied by the Manufacturer.
 2. Under the direction and Site supervision of the Manufacturer’s authorized field representative when directed to do so by the Project Engineer.
 3. In drilled out holes of the proper depth and diameter cleaned of dust and debris according to the Manufacturer’s specific installation instructions.
B. Post installed anchors anchored to substrate with an injectable adhesive shall have no load applied until adhesive has properly cured and developed specified strength where cure time shall be as called out in the Manufacturer’s literature based on prevailing environmental conditions at the time of installation.

END OF SECTION 050940
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For penetration firestopping sealants and sealant primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4.1: For penetration firestopping sealants and sealant primers, documentation indicating that products comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.

 1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Test Reports: For each penetration firestopping system, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping system when ambient or substrate temperatures are outside limits permitted by penetration firestopping system manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping materials per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.8 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping systems can be installed according to specified firestopping system design.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping systems.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Grace Construction Products.
 3. Hilti, Inc.
 6. NUCO Inc.
8. RectorSeal Corporation.
9. Specified Technologies Inc.
10. 3M Fire Protection Products.
12. USG Corporation.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:
 1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.
 2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:
 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.
 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Global in its "Building Materials Approval Guide."
 4) Owner will engage a qualified testing agency to perform tests and inspections.

2.3 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
 1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg (2.49 Pa).
 1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated.
 2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.
 3. W-Rating: Provide penetration firestopping systems showing no evidence of water leakage when tested according to UL 1479.
D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per UL 1479, based on testing at a positive pressure differential of 0.30-inch wg (74.7 Pa).

1. L-Rating: Not exceeding 5.0 cfm/sq. ft. (0.025 cu. m/s per sq. m) of penetration opening at and no more than 50-cfm (0.024-cu. m/s) cumulative total for any 100 sq. ft. (9.3 sq. m) at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less than 25 and 450, respectively, per ASTM E 84.

F. VOC Content: Penetration firestopping sealants and sealant primers shall comply with the following limits for VOC content:

1. Sealants: 250 g/L.
2. Sealant Primers for Nonporous Substrates: 250 g/L.
3. Sealant Primers for Porous Substrates: 775 g/L.

G. Low-Emitting Materials: Penetration firestopping sealants and sealant primers shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

H. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping system manufacturer and approved by qualified testing and inspecting agency for conditions indicated.

1. Permanent forming/damming/backing materials.
2. Substrate primers.
3. Collars.
4. Steel sleeves.

2.4 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer sleeve lined with an intumescent strip, a flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Intumescent Composite Sheets: Rigid panels consisting of aluminum-foil-faced intumescent elastomeric sheet bonded to galvanized-steel sheet.

E. Intumescent Putties: Nonhardening, water-resistant, intumescent putties containing no solvents or inorganic fibers.
F. Intumescent Wrap Strips: Single-component intumescent elastomeric sheets with aluminum foil on one side.

G. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

H. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

I. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

2.5 MIXING

A. Penetration Firestopping Materials: For those products requiring mixing before application, comply with penetration firestopping system manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings immediately to comply with manufacturer's written instructions and with the following requirements:

1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping materials.

2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.
3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches (76 mm) high and with minimum 0.375-inch (9.5-mm) strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet (4.57 m) from end of wall and at intervals not exceeding 30 feet (9.14 m).

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches (150 mm) of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
PENETRATION FIRESTOPPING

4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E 2174.

B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

3.6 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping system manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping material and install new materials to produce systems complying with specified requirements.

3.7 PENETRATION FIRESTOPPING SYSTEM SCHEDULE

A. Where UL-classified systems are indicated, they refer to system numbers in UL's "Fire Resistance Directory" under product Category XHEZ.

B. Where Intertek Group-listed systems are indicated, they refer to design numbers in Intertek Group's "Directory of Listed Building Products" under "Firestop Systems."

C. Where FM Global-approved systems are indicated, they refer to design numbers listed in FM Global's "Building Materials Approval Guide" under "Wall and Floor Penetration Fire Stops."

D. Penetration Firestopping Systems for Metallic Pipes, Conduit, or Tubing.

1. UL-Classified Systems: Match Existing
4. F-Rating: 2 hours.
5. T-Rating: 2 hours.
6. W-Rating: No leakage of water at completion of water leakage testing.
7. Type of Fill Materials: As required to achieve rating.
SECTION 09900 PAINTING

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes surface preparation and field painting of the following:
 1. Exposed conduits and conduit support stanchions and plates.
 2. Wall painting to match existing where restoration is required.
 3. Surface preparation, priming, and finish coats specified in this Section are in addition to shop
 priming and surface treatments.
 B. Paint exposed surfaces of exposed conduits where approved by the Owner and walls that were
 disrupted to accommodate new electrical. Colors to match existing and/or adjacent utilities
 and/or walls. The entire wall section disrupted by new conduit penetrations shall be painted.
 C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and
 labels.

1.3 SUBMITTALS
 A. Product Data: For each paint system specified. Include block fillers and primers.
 1. Material List: Provide an inclusive list of required coating materials. Indicate each material
 and cross reference specific coating, finish system, and application. Identify each material by
 manufacturer's catalog number and general classification.
 2. Manufacturer's Information: Provide manufacturer's technical information, including label
 analysis and instructions for handling, storing, and applying each coating material proposed
 for use.
 B. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors avail-
 able for each type of finish coat material indicated.

1.4 QUALITY ASSURANCE
 A. Source Limitations: Obtain block fillers, primers, and undercoat materials for each coating sys-
 tem from the same manufacturer as the finish coats.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers
 bearing manufacturer's name and label.
 B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum
 ambient temperature of 45 deg F. Maintain containers used in storage in a clean condition, free
 of foreign materials and residue.
 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste dai-
 ly. Take necessary measures to ensure that workers and work areas are protected from fire
 and health hazards resulting from handling, mixing, and application.

1.6 PROJECT CONDITIONS
 A. Do not apply paint in when the relative humidity exceeds 85 percent; or at temperatures less than
 5 deg F above the dew point; or to damp or wet surfaces.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products in the paint schedules.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following:

 Benjamin Moore & Co.
 O'Leary Paint Co.
 PPG Industries, Inc.
 Pratt & Lambert, Inc.
 Standard Detroit Paint Co.
 Sherwin Williams Co.

2.2 PAINT MATERIALS, GENERAL

A. Material Compatibility: Provide block fillers, primers, undercoats, and finish coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.

B. Material Quality: Provide manufacturer's best quality paint material of the various coating types specified. Paint material containers not displaying manufacturer's product identification will not be acceptable.

C. Colors: Provide colors selected by the Owner to match existing.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.

 1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.

B. Provide seven days' notice to the Owner's Representative prior to the application of epoxy paints.

C. Coordination of Work: Ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.

 1. Notify the Owner about anticipated problems using the materials specified over substrates primed by others.

3.2 PREPARATION

A. Cleaning, General: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.

 1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
B. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition and as specified.
1. Provide barrier coats over incompatible primers or remove and reprime.
2. For coatings applied over previously painted surfaces, test application to check for lifting and other adhesion problems. Perform test in an isolated area where practicable.
3. Ferrous Metals: Clean ungalvanized ferrous metal surfaces that have not been shop coated; remove oil, grease, dirt, loose mill scale, and other foreign substances. Use solvent or mechanical cleaning methods that comply with the Steel Structures Painting Council's (SSPC) recommendations.
 a. Treat bare and sandblasted or pickled clean metal with a metal treatment wash coat before priming.
 b. Touch up bare areas and shop applied prime coats that have been damaged. Wire brush, clean with solvents recommended by paint manufacturer, and touch up with the same primer as the shop coat.
C. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.
1. Maintain containers used in mixing and applying paint in a clean condition, free of foreign materials and residue.
2. Stir material before application to produce a mixture of uniform density. Stir as required during application. Do not stir surface film into material. If necessary, remove surface film and strain material before using.
3. Use only thinners approved by paint manufacturer and only within recommended limits.

3.3 APPLICATION
A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.
1. Do not paint over dirt, rust, scale, grease, moisture, scuffed surfaces, or conditions detrimental to formation of a durable paint film.
2. Provide finish coats that are compatible with primers used.
B. Scheduling Painting: Apply first coat to surfaces that have been cleaned, pretreated, or otherwise prepared for painting as soon as practicable after preparation and before subsequent surface deterioration.
1. The number of coats and the film thickness required are the same regardless of application method. Do not apply succeeding coats until the previous coat has cured as recommended by the manufacturer. If sanding is required to produce a smooth, even surface according to manufacturer's written instructions, sand between applications.
2. Omit primer on metal surfaces that have been shop primed and touchup painted.
3. If undercoats, stains, or other conditions show through final coat of paint, apply additional coats until paint film is of uniform finish, color, and appearance. Give special attention to ensure edges, corners, crevices, welds, and exposed fasteners receive a dry film thickness equivalent to that of flat surfaces.
4. Allow sufficient time between successive coats to permit proper drying. Do not recoat surfaces until paint has dried to where it feels firm, does not deform or feel sticky under moderate thumb pressure, and where application of another coat of paint does not cause the undercoat to lift or lose adhesion.
C. Application Procedures: Apply paints and coatings by brush, roller, spray, or other applicators according to manufacturer's written instructions.
1. Brushes: Use brushes best suited for the type of material applied. Use brush of appropriate size for the surface or item being painted.
2. Rollers: Use rollers of carpet, velvet back, or high pile sheep's wool as recommended by the manufacturer for the material and texture required.

3. Spray Equipment: Use airless spray equipment with orifice size as recommended by the manufacturer for the material and texture required.

D. Minimum Coating Thickness: Apply paint materials no thinner than manufacturers recommended spreading rate. Provide the total dry film thickness of the entire system as recommended by the manufacturer.

E. Prime Coats: Before applying finish coats, apply a prime coat of material, as recommended by the manufacturer, to material that is required to be painted or finished and that has not been prime coated by others. Recoat primed and sealed surfaces where evidence of suction spots or unsealed areas in first coat appears, to ensure a finish coat with no burn through or other defects due to insufficient sealing.

F. Pigmented (Opaque) Finishes: Completely cover surfaces as necessary to provide a smooth, opaque surface of uniform finish, color, appearance, and coverage. Cloudiness, spotting, holidays, laps, brush marks, runs, sags, repines, or other surface imperfections will not be acceptable.

G. Completed Work: Match approved samples for color, texture, and coverage. Remove, refinish, or repaint work not complying with requirements.

3.4 CLEANING

A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
 1. After completing painting, clean glass and paint spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.
 2. Dispose wash water from latex paint to the sanitary sewer. Excess latex paint shall be salvaged for reuse or solidified for disposal with other construction materials. Dry empty latex paint cans and dispose with other construction materials. Coordinate disposal of alkyd paints and solvents with University project manager.

3.5 PROTECTION

A. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.

B. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.
 1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

END OF SECTION 09900
SECTION 260510 – ELECTRICAL DESIGN AND EQUIPMENT

PART 1 - GENERAL

1.1 SCOPE OF SUPPLY

This section includes design, performance, and technical requirements for Supplier-furnished electrical equipment. The scope of supply shall include the following items:

Low voltage power distribution equipment, including the following:

- Low voltage switchboards.
- Low voltage panelboards.
- Dry type transformers.

1.2 NOT USED

1.3 PERFORMANCE AND DESIGN REQUIREMENTS

Performance and design requirements for the Supplier-furnished electrical equipment are as required by Supplier's design, as indicated in Article 16051.2, on the Electrical Design and Equipment Data Sheets included at the end of this section, and as follows:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design ambient temperature</td>
<td>104°F (40°C)</td>
</tr>
<tr>
<td>Site elevation</td>
<td>Less than 3,300 ft (1,000 m)</td>
</tr>
</tbody>
</table>

1.4 CODES AND STANDARDS

Work performed under these specifications shall be done in accordance with the following codes and standards. Unless otherwise specified, the applicable governing edition and addenda to be used for all references to codes or standards specified herein shall be interpreted to be the jurisdictionally approved edition and addenda. If a code or standard is not jurisdictionally mandated, then the current edition and addenda in effect at the date of this document shall apply. These references shall govern the work except where they conflict with the Purchaser's specifications. In case of conflict, the latter shall govern to the extent of such difference:
ELECTRICAL DESIGN AND EQUIPMENT

<table>
<thead>
<tr>
<th>Work</th>
<th>In Accordance With</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>The latest revisions of the applicable ANSI C37, NEMA ICS2, IEC, and UL standards</td>
</tr>
</tbody>
</table>

1.5 NOT USED

1.6 APPROVED MANUFACTURERS OF COMPONENTS

For the following components, only the listed manufacturers are recognized as maintaining the level of quality of workmanship required by these specifications. If the Supplier wants to propose a non-listed manufacturer that is considered to provide an equivalent level of quality, this manufacturer must be identified and supporting testimony provided. Acceptance of the manufacturer as a substitute is at the discretion of the Purchaser:

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
</tr>
</thead>
</table>

1.7 NOT USED

1.8 NOT USED

PART 2 – PRODUCTS
2.1

2.1.2 Power Circuit Breakers

The switchgear shall be furnished with high voltage power circuit breakers of standard drawout design with the following design features:

Shall not be forced cooled.

All secondary device contact surfaces and main contact surfaces shall be silver-to-silver, designed and fabricated to be self-aligning and to resist burning and deterioration.

Removable breaker units of the same type and ampere capacity shall be wired alike and shall be mechanically and electrically interchangeable.

Shall be a 3-pole single-throw unit, complete with operating mechanism and other required devices, mounted on a drawout type carriage. Each operating mechanism shall be of the stored energy type with a closing coil and single shunt trip coils. The closing devices, tripping devices, and charging motor shall be designed and rated for operation on the nominal control voltage specified.

Operating mechanisms shall be trip-free in any position and shall be antipump. The breaker main contacts shall not touch or arc across into a faulted circuit when a breaker close signal is received while a trip signal is being applied.

Each breaker shall be furnished with a manual trip push button which mechanically trips the breaker. The manual trip push button and its associated breaker trip linkage shall have no common components with the electrical trip mechanism, except the final breaker release device.

Each breaker shall be furnished with an operations counter which shall be readable from the front of the switchgear unit with the breaker in the connected position.

2.1.2.1 Rating

Power circuit breakers furnished under these specifications shall be provided with the ratings as required by the Supplier's design. All current ratings shall be at least 10 percent greater than the values required by the design. Voltage ratings shall be in accordance with the indicated industry standards for the nominal system voltage utilized.

2.1.2.2 Auxiliary contacts

Each breaker shall be furnished with a sufficient number of auxiliary contacts and auxiliary switch contacts to provide all necessary interlocks for operation of the
breaker. In addition, two normally open and two normally closed sets of spare contacts shall be provided and wired out to terminal blocks for use by the Purchaser.

Breaker mechanism operated auxiliary switches shall operate only when the breaker is in the connected position.

2.1.2.3 Breaker control devices
Each remotely controlled breaker shall be furnished with a local control switch and breaker position switch arranged to provide the following control of breaker operation:

<table>
<thead>
<tr>
<th>Breaker Drawout Position</th>
<th>Remote Control</th>
<th>Local Control Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Close</td>
<td>Trip</td>
</tr>
<tr>
<td>Connected</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Test</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Disconnected</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Each circuit breaker local control switch shall have a trip/close escutcheon, shall have a center normal position, shall be spring return to normal from close and trip, shall have red and green targets to indicate the latest operation of the switch, and shall be furnished with indicating lights. One set of these contacts shall be wired out to terminal blocks for use by the Purchaser.

The breaker position switch shall be furnished with four stages. Two breaker position switch contacts shall close only when the breaker is in the connected position; the remaining two contacts shall close only when the breaker is in the test position.

2.1.3 Power and Control Conductors

Switchgear power and control conductors shall be furnished in accordance with the requirements of the articles which follow. Provisions shall be made for bus expansion, to prevent undesirable or destructive mechanical strains in the bus supports and connections, through a full ambient temperature range from -13° F (-25° C) to +104° F (+40° C). Expansion joints shall be furnished where required.
2.2.6 Control Power

Electrical power for control and instrumentation shall be as required by Supplier's design.

Where dc control power is specified on the Electrical Design and Equipment Data Sheets, the Supplier shall provide a common bus throughout the controller assembly requiring a single connection of dc control power from the Purchaser. Suitable branch circuit protection and control power disconnecting means shall be provided for each controller unit.

The paragraphs which follow apply only to ac control power.

Where ac control power is specified on the Electrical Design and Equipment Data Sheets, all control power requirements necessary to operate each controller shall be provided by means of individual control power transformers. Each controller unit shall be provided with an individual transformer for control and instrumentation associated with that controller only.

Control power transformers shall be rated not less than 1 kVA. Each control power transformer shall be provided with primary and secondary fuses. The size of each control power transformer shall be clearly indicated on each section schematic and wiring diagram submitted for review.

Control power interlocking provisions shall be provided to allow testing of the control operation of each controller from an external source of control power with the contactor disconnected and isolated from the main bus.

Control power interlocking provisions shall not allow the control power transformer of the controller to be energized during testing as described above.

The Supplier shall furnish a manually operated switch to transfer the control power from the normal source to the external test circuit source.

2.2.7 NOT USED

2.2.8 Wiring and Wiring Diagrams

The Supplier shall provide internal wiring, connections, and diagrams in accordance with the requirements of the articles which follow.

2.2.8.1 Control and instrument wiring

All low voltage control and instrument wiring used within the controller assemblies.

All internal wiring shall be neatly and carefully installed and shall be terminated on terminal blocks or devices. Conductors and terminals shall be plainly lettered or marked in accordance with the manufacturer's connection diagrams. Any controller
assembly that is split for shipment shall have terminal blocks adjacent to the split and shall be provided with wiring required to interconnect the shipping sections.

All leads for external circuit wiring shall be connected to terminal blocks located for convenient connection of external circuits. Splices will not be permitted in control wiring or instrument leads.

The minimum sizes of wire used in the controller assembly for control and instrumentation shall be in accordance with the following table:

<table>
<thead>
<tr>
<th>Minimum Wire Service</th>
<th>Size, AWG (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supplies</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Current transformer circuits</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Indicating lights and annunciator circuits</td>
<td>16 (1.5)</td>
</tr>
<tr>
<td>All other wiring</td>
<td>14 (2.5)</td>
</tr>
</tbody>
</table>

All spare contacts on relays, control switches, limit switches, or similar devices shall be wired to accessible terminal blocks for the Purchaser's future connections. All wiring leaving an enclosure shall leave from terminal blocks and not from other devices within the enclosure.

Terminal blocks shall not be mounted in compartments containing cable or bus operating at voltages above 600 volts.

Control and potential buses, as required, shall be switchboard wire installed at the rear of the instrument and control compartment.

Each terminal block, conductor, relay, circuit breaker, fuse block, and other auxiliary devices and terminals shall be permanently labeled to coincide with the identification indicated on the drawings. All wiring terminations shall be identified by legible markings on the device terminals.

2.2.8.2 Diagrams

Wiring diagrams shall be in accordance with the requirements specified herein. Controller schematic, connection, and interconnection diagrams furnished by the Supplier shall be based on schematic (elementary) diagrams and connection diagrams furnished by the Purchaser.

The typical schematic diagram of each type of controller specified shall be submitted with the proposal.

The Supplier shall prepare his schematic (elementary), connection, and interconnection diagrams which shall have terminal designations and terminal arrangement acceptable to the Engineer.
ELECTRICAL DESIGN AND EQUIPMENT

The complete connection diagram of each controller unit shall be on an individual sheet. Information on each connection diagram sheet shall include point-to-point wiring of the entire controller as it will be physically constructed, including wiring on the contactor itself. Elementary diagrams of control and instrument circuits, contact arrangement of switches, and internal wiring of relays and instruments for each section shall be on additional sheets as required. Interconnection diagrams shall be on separate sheets. All sheets shall be the same size.

Information indicated on the Supplier's drawings shall include wiring of the individual units as they will actually appear in the assembly, contact arrangements of switches, and internal wiring of relays and instruments.

Each item of mounted equipment indicated on the diagrams shall be identified by item number and name.

2.2.8.3 Wiring method

If the wiring method is to be an internal programmable logic controller (PLC) as indicated on the Electrical Design and Equipment Data Sheets, then the Supplier shall furnish a Purchaser-approved PLC in each shipping split of each controller assembly. All control wiring from the device contacts and protective relays to the internal PLC shall be installed by the Supplier as indicated on the typical schematics. The Purchaser will program the PLCs as required.

If a remote PLC is to be used as indicated on the Electrical Design and Equipment Data Sheets, the Supplier has no responsibility to provide or connect device contacts and protective relays to the PLC.

2.2.9 Tightening of Connections

The Supplier shall include on his erection and assembly drawings complete information for tightening of all electrical connections secured with bolts or studs. The information furnished shall include torque wrench settings or complete details of other tightening procedures recommended for bus joints, connector attachments, and contact attachments.

2.3 NOT USED

2.4 Low Voltage Power Distribution Equipment

When specified to be in the Supplier's scope of supply, the Supplier shall supply low voltage power distribution equipment in accordance with the articles below and as required by the Supplier's design. The design shall be in accordance with accepted industry practices and standards for electrical power generation.

2.4.1 Low Voltage Panelboards and Switchboards
Low voltage power panelboards and switchboards shall be furnished in accordance with the following articles.

2.4.1 Enclosures

Panelboards and switchboards shall be furnished with enclosures of the types as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Description of Enclosure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoors - clean area</td>
<td>Indoor with gasketed cover, ventilated</td>
</tr>
<tr>
<td>Indoors - dusty area</td>
<td>Indoor dustproof enclosure, unventilated</td>
</tr>
<tr>
<td>Outdoors - protected</td>
<td>Combination outdoor/dustproof, unventilated</td>
</tr>
<tr>
<td>Outdoors - unprotected</td>
<td>Wash-down/dustproof, unventilated</td>
</tr>
<tr>
<td>Hazardous</td>
<td>Listed for conditions present</td>
</tr>
</tbody>
</table>

2.4.2 Busing

Main, neutral, and ground bussing shall be copper. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design.

2.4.3 Circuit breakers

Main breakers shall be provided in all panelboards and switchboards. Main and feeder breakers shall be molded case, bolt-in type. Voltage and current ratings shall be standard ratings defined in the applicable standards required to meet the requirements of the Supplier's design. Breakers and busing shall be individually rated and labeled for the required short-circuit amperes available. Tandem or miniature circuit breakers shall not be used.

2.4.4 Spares

Total expected load on each panelboard or switchboard shall not exceed 80 percent of its continuous current rating. At least one spare feeder breaker of each size and number of poles used for loads shall be provided in each panelboard and switchboard. At least six poles of spare space shall be provided in each panelboard and switchboard.

2.4.2 Dry Type Distribution Transformers

Dry type distribution transformers shall be used indoors in dry areas only and shall meet the following requirements:
ELECTRICAL DESIGN AND EQUIPMENT

Shall have copper windings rated for 302°F (150°C) temperature (by resistance) rise above 104°F (40°C) ambient.

Shall be sized to approximately match the nominal ampacity of the panelboard or switchboard which is connected to its secondary terminals.

Sound level shall not exceed 45 dBA when measured in accordance with NEMA standards.

When installed in areas where dirt and dust are present, shall have filters installed on vent openings or shall be non-ventilated.

Shall be appropriately derated when the ambient temperature exceeds 104°F (40°C).

2.4.3 Nameplates

Engraved nameplates shall be furnished for the front of each item of equipment.

PART 3 – EXECUTION

Not Applicable.

END OF SECTION 260510
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.
B. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

C. Multi-conductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for nonmetallic-sheathed cable, Type NM with ground wire.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

E. Feeders in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

F. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway, Armored cable, Type AC, Metal-clad cable, or Type MC as per applicable code.

G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

I. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

J. Branch Circuits in Cable Tray: Type THHN/THWN-2, single conductors in raceway.

K. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.7 FIRESTOPPING
 A. Apply fire-stopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
 B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 C. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test conductors feeding the following critical equipment and services for compliance with requirements.
 a. Panelboards, uninterruptable power sources, transformers, and associated switches.
 D. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
 E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section includes grounding and bonding systems and equipment.
 B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.
 B. Qualification Data: For testing agency and testing agency's field supervisor.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 1. In addition to Operation and Maintenance Data include the following:
 a. Instructions for periodic testing and inspection of grounding features
1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 NOT USED

2.2 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross...
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad 3/4 inch by 10 feet.
 1. Backfill Material: Electrode manufacturer's recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 NOT USED

3.3 NOT USED

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Receptacle circuits.
4. Three-phase motor and appliance branch circuits.
5. Flexible raceway runs.
6. Armored and metal-clad cable runs.
7. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

3.6 FIELD QUALITY CONTROL
A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
E. Grounding system will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.
G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Owner’s representative promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawing: For fabrication and installation details for electrical hangers and support systems.

1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which hangers and supports will be attached.
 3. Size and location of initial access modules for acoustical tile.
 4. Items penetrating finished ceiling, including the following:
 a. Access panels.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line,; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 7. Channel Dimensions: Selected for applicable load criteria.

B. Aluminum Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.
2. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
4. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
5. Channel Dimensions: Selected for applicable load criteria.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing CO., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as scheduled in NECA 1, where its Table 1 lists maximum spacings that are less than those stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 05 5000 "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 4000psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

 A. Section Includes:

 1. Metal conduits, tubing, and fittings.
 2. Metal wireways and auxiliary gutters.
 3. Surface raceways.

 B. Related Requirements:

1.3 DEFINITIONS

 A. GRC: Galvanized rigid steel conduit.

1.4 ACTION SUBMITTALS

 A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

 B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

 A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

 B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NOT USED

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

A. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

B. Wireway Covers: Screw-cover type unless otherwise indicated.

C. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Surface Metal Raceways: Galvanized steel with snap on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Owner

2.5 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, with gasketed cover.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

F. Cabinets:
 1. NEMA 250, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 NOT USED

2.7 NOT USED

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
c. Mechanical rooms.
d. Gymnasiums.

4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

B. Minimum Raceway Size: 3/4-inch trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Comply with NEMA FB 2.10.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

D. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Arrange stub-ups so curved portions of bends are not visible above finished slab.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. Support conduit within 12 inches of enclosures to which attached.
RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

H. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

Q. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

S. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

T. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

U. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
3. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
4. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

V. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

W. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

X. Locate boxes so that cover or plate will not span different building finishes.

Y. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

AA. Set metal floor boxes level and flush with finished floor surface.

BB. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
3.3 NOT USED

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.5 FIRESTOPPING
 A. Install fire-stopping at penetrations of fire-rated floor and wall assemblies.

3.6 PROTECTION
 A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water-stop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLING

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS
 A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS
 A. Description: Manufactured plastic, sleeve-type, water-stop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber water-stop collar with center opening to match piping OD.

2.4 GROUT
 A. Description: Non-shrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
 C. Design Mix: 4000-psi 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS
 A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLINGS

2. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
SLEEVES AND SLEEVE SEAL FOR ELECTRICAL RACEWAYS AND CABLES

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position water-stop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels, including arc-flash warning labels.
8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 Manufacturers:

A. Manufacturers: Subject to compliance with requirements:

IDENTIFICATION FOR ELECTRICAL SYSTEMS

2. Brady.
4. IEM Products, Inc.
5. Panduit.
7. Safety Label Solutions.
9. Utility Safeguard, LLC.

2.2 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F ambient; 180 deg F, material surfaces.

2.3 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
B. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."
C. Warning labels and signs shall include, but are not limited to, the following legends:
IDENTIFICATION FOR ELECTRICAL SYSTEMS

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.4 LABELS

A. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-Around Labels for Raceways and Cables Carrying Circuits at 600 V or Less: Slit, pre-tensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceways they identify, and that stay in place by gripping action.

C. Self-Adhesive Labels:
 1. Preprinted, 3-mil thick, vinyl flexible label with acrylic pressure-sensitive adhesive.
 a. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized to fit the raceway diameter, such that the clear shield overlaps the entire printed legend.
 2. Vinyl, thermal, transfer-printed, 3-mil thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
 a. Nominal Size: 3.5-by-5 inch.
 3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 4. Marker for Tags: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

2.5 BANDS AND TUBES:

A. Snap-Around, Color-Coding Bands for Raceways and Cables: Slit, pre-tensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters of raceways or cables they identify, and that stay in place by gripping action.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameters of and shrunk to fit firmly around cables they identify. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

2.6 TAPES AND STENCILS:

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

C. Tape and Stencil for Raceways Carrying Circuits 600 V or Less: 4 inch wide black stripes on 10 inch centers placed diagonally over orange background that extends full length of raceway or duct and is 12 inches wide. Stop stripes at legends.

D. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.7 Tags

A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.

B. Write-On Tags:

1. Polyester Tags: 0.010 inc thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.
2. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.8 Signs

A. Laminated Acrylic or Melamine Plastic Signs:

1. Engraved legend.
2. Thickness:
 a. For signs up to 20 sq. inches, minimum 1/16-inch.
 b. For signs larger than 20 sq. inches, 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Punched or drilled for mechanical fasteners.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 2. Tensile Strength at 73 deg F according to ASTM D 638: 7000 psi
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

D. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

G. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

H. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

I. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

J. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

L. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

3.3 IDENTIFICATION SCHEDULE

A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch centers. Stop stripes at legends. Apply stripes to the following finished surfaces:
 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 2. Wall surfaces directly external to raceways concealed within wall.
 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

B. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive vinyl labels. Install labels at 30-foot maximum intervals.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl label. Install labels at 30-foot maximum intervals.

D. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase-and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

F. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and hand-holes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

G. Install instructional sign, including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

H. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and hand-holes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

I. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive vinyl labels with the conductor designation.

J. Conductors To Be Extended in the Future: Attach marker tape to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker-tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

L. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

M. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

N. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

O. Arc Flash Warning Labeling: Self-adhesive thermal transfer vinyl labels.
 2. Comply with Section 260574 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

P. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
Q. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch high letters for emergency instructions at equipment used for power transfer.

R. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine plastic label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless labels are provided with self-adhesive means of attachment, fasten them with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment To Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 g. Substations.
 h. Emergency system boxes and enclosures.
 i. Motor-control centers.
 j. Enclosed switches.
 k. Enclosed circuit breakers.
 l. Enclosed controllers.
 m. Variable-speed controllers.
 n. Push-button stations.
 o. Power-transfer equipment.
 p. Contactors.
 q. Remote-controlled switches, dimmer modules, and control devices.
 r. Battery-inverter units.
 s. Battery racks.
 t. Power-generating units.
 u. Monitoring and control equipment.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

v. UPS equipment.

END OF SECTION 260553
LOW VOLTAGE TRANSFORMERS

SECTION 262200 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes: distribution, energy efficient dry-type transformers rated 600 V and less, with capacities up to 1500 kVA. Nominally: 408V 3Ø 60Hz delta input; transformer to output 208V 3Ø 60Hz/ (120V 1Ø).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For transformers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Qualification Data: For testing agency.
C. Source quality-control reports.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. GE Electrical Distribution & Control.
3. Siemens Industries, Inc.
4. Square D/Groupe Schneider NA.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.

D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
LOW VOLTAGE TRANSFORMERS

E. Coils: Continuous windings without splices except for taps.
 1. Internal Coil Connections: Brazed or pressure type.
 2. Coil Material: Copper.

F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: One leg per phase.

D. Enclosure: Ventilated.
 1. NEMA 250, type 2: Core and coil shall be encapsulated within resin compound utilizing a vacuum pressure impregnation process to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.

E. Transformer Enclosure Finish: Comply with NEMA 250.
 1. Finish Color: NSF/ANSI 61 gray.

F. Taps for Transformers 3 kVA and Smaller: None

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature. Chosen

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.

K. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for non-sinusoidal load current-handling capability to the degree defined by designated K-factor. Chosen
LOW VOLTAGE TRANSFORMERS

1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
2. Indicate value of K-factor on transformer nameplate.
3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.

M. Neutral: Rated 200 percent of full load current for K-factor rated transformers.

N. Wall Brackets: Manufacturer's standard brackets or floor mounted.

O. Fungus Proofing: Permanent fungicidal treatment for coil and core.

P. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 1. 51 to 150 kVA: ~55 dBA +0-10
 2. 751 to 1000 kVA: ~70 dBA +0-10
 3. 1001 to 1500 kVA: ~70 dBA +0-10

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate for each distribution transformer, mounted with corrosion-resistant screws.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 1. Resistance measurements of all windings at the rated voltage connections and at all tap connections.
 2. Ratio tests at the rated voltage connections and at all tap connections.
 3. Phase relation and polarity tests at the rated voltage connections.
 4. No load losses, and excitation current and rated voltage at the rated voltage connections.
 5. Impedance and load losses at rated current and rated frequency at the rated voltage connections.
 6. Applied and induced tensile tests.
 7. Regulation and efficiency at rated load and voltage.
 8. Insulation Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb.

1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
262200

LOW VOLTAGE TRANSFORMERS

F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Perform tests and inspections and prepare test reports.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.

E. Remove and replace units that do not pass tests or inspections and retest as specified above.

F. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.

 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

G. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Connect buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262200
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
 A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS
 A. ATS: Acceptance testing specification.
 B. GFCI: Ground-fault circuit interrupter.
 C. GFEP: Ground-fault equipment protection.
 D. HID: High-intensity discharge.
 E. MCCB: Molded-case circuit breaker.
 F. SPD: Surge protective device.
 G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
PANELBOARDS

2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.
B. Panelboard Schedules: For installation in panelboards

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
1.8 QUALITY ASSURANCE
 A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING
 A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
 B. Handle and prepare panelboards for installation according to NECA 407.

1.10 FIELD CONDITIONS
 A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F 23 deg F to plus 105 deg F.
 B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet (2000 m).
 C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify WSU no fewer than two days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without WSU written permission.
 3. Comply with NFPA 70E.

1.11 WARRANTY
 A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

E. Enclosures: Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Height: 84 inches (2.13 m) maximum.

3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.

4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

7. Finishes:
 a. Panels and Trim: Galvanized Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Galvanized Steel.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
F. Incoming Mains:

1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

G. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
6. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.
7. Split Bus: Vertical buses divided into individual vertical sections.

H. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Gutter-Tap Lugs: Mechanical type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

I. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting
PANELBOARDS

and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

J. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: Ten percent.

K. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.

1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Panelboards, Overcurrent Protective Devices, Controllers, Contractors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.
PANELBOARDS

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker or lugs only.

E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller:
 Plug-in circuit breakers where individual positive-locking device requires mechanical release
 for removal.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A:
 Plug-in circuit breakers where individual positive-locking device requires mechanical release
 for removal.

G. Branch Overcurrent Protective Devices: Fused switches.

H. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller,
 with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and
 secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.

2.4 BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: lugs only.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing
 adjacent units.

E. Contactors in Main Bus: NEMA ICS 2, Class A, electrically held, general-purpose controller,
 with same short-circuit interrupting rating as panelboard.
 1. Internal Control-Power Source: Control-power transformer, with fused primary and
 secondary terminals, connected to main bus ahead of contactor connection.
 2. External Control-Power Source: 120-V branch circuit.
PANELBOARDS

F. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

G. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 a. Eaton Corporation; Cutler-Hammer Products.
 c. Siemens Industries, Inc.
 d. Square D.

B. MCCB: Comply with UL 489, to meet available fault currents.
 1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

 3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

 6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
PANELBOARDS

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. Fuses and Spare-Fuse Cabinet: Comply with requirements specified in Section 262813 "Fuses."
 2. Fused Switch Features and Accessories:
 a. Standard ampere ratings and number of poles.
 b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:

1. Install panelboards on cast-in-place concrete equipment base(s) where applicable.
2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
3. Comply with requirements for seismic control devices.

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90” above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
PANELBOARDS

J. Mounting panelboards with space behind is recommended for damp, wet, or dirty locations. The steel slotted supports in the following paragraph provide an even mounting surface and the recommended space behind to prevent moisture or dirt collection.

K. Mount surface-mounted panelboards to steel slotted supports 5/8 inch to 1 1/4 inch in depth. Orient steel slotted supports vertically.

L. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

M. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

N. Install filler plates in unused spaces.

O. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

P. Arrange conductors in gutters into groups and bundle and wrap with wire ties. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate.

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate.

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

D. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges.

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

1. Measure loads during period of normal facility operations.
PANELBOARDS

2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION
A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY
A. Section Includes:
1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Isolated-ground receptacles.
5. Cord and Plug receptacles.
6. Communications outlets.

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
WIRING DEVICES

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from
mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.4 GFCI RECEPTACLES

A. General Description:

1. Straight blade, feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

2.5 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:

1. Description:

 a. Comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.
 b. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.6 CORD AND PLUG SETS

A. Description:

1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.8 FINISHES

A. Device Color:

1. Wiring Devices Connected to Normal Power System: Per Owner, match existing in room or area of work.

2. Wiring Devices Connected to UPS: Per Owner, Yellow.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.

2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.

3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.

4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.

2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.

3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

4. Existing Conductors:

 a. Cut back and pigtail, or replace all damaged conductors.

 b. Straighten conductors that remain and remove corrosion and foreign matter.

 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black lettering on face of plate, and durable wire markers or tags inside outlet boxes.
3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
 2. Test Instruments: Use instruments that comply with UL 1436.
 3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.
D. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Panelboards.
 b. Switchboards.
 c. Enclosed switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit [in electronic format suitable for use in coordination software and in PDF format.
5. Coordination charts and tables and related data.
6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data, include the following:
FUSES
1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS
A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Cooper Bussmann, Inc.
3. Ferraz Shawmut, Inc.
B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES
A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, time delay.
FUSES
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
7. Type T: 600-V, zero- to 800-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
1. Feeders: Class RK1, fast acting Class J, fast acting.
2. Power Electronics Circuits: Class J, high speed.
3. Other Branch Circuits: Class RK1, time delay.
4. Control Transformer Circuits: Class CC, time delay, control transformer duty.

3.3 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Install spare-fuse cabinet(s) in location shown on the Drawings or as indicated in the field by Owner.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Non-fusible switches.
 3. Molded-case circuit breakers (MCCBs).
 5. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer's field service report.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
 3. Do not proceed with interruption of electric service without Owner's written permission.
 4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge fuse interiors to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 6. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
 8. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. NOT USED

B. Type GD, General Duty, Single Throw, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

C. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Type HD, Heavy Duty, Six Pole, Single Throw, 600-V ac, 200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

E. Type HD, Heavy Duty, Double Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 5. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
 6. Lugs: Mechanical type, suitable for number, size, and conductor material.
 7. Accessory Control Power Voltage: Remote mounted and powered; 120-V ac.

2.3 MOLDED-CASE CIRCUIT BREAKERS

A. See WSU design standards.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I2t response.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system,
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 8. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 9. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
10. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
12. Electrical Operator: Provide remote control for on, off, and reset operations.

2.4 MOLDED-CASE SWITCHES

A. NOT USED

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
 1. Standard frame sizes and number of poles.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic switch contacts, "b" contacts operate in reverse of switch contacts.
7. Alarm Switch: One NO contact that operates only when switch has tripped.
8. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
9. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.
10. Electrical Operator: Provide remote control for on, off, and reset operations.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, [Type 1] <Insert type>.
2. Outdoor Locations: NEMA 250, Type 3R.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in section 260529.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges

END OF SECTION 262816
SECTION 263353 – TOSHIBA STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

PART 1 - SCOPE

1.1 SYSTEM

These specifications describe a high efficiency continuous duty, three-phase, on-line, double conversion, solid-state Uninterruptible Power Supply system (UPS). The UPS shall operate utilizing the existing power distribution system to provide high quality, uninterruptible power to critical loads.

The model T90S3S16K-S6XSN UPS shall consist of an AC/DC multi-level Insulated Gate Bipolar Transistor (IGBT) Rectifier, DC/DC Converter/Battery Charger, DC/AC multi-level IGBT Inverter, integral static bypass, front-accessible controls, display, and monitor.

1.2 Preferred UPS Vendor

The contractor is to purchase and supply the specified Toshiba UPS from WSU preferred UPS vendor (Ancona Controls). Contact information as follows:

WSU Assign Sales Rep: Beth Ancona
Ancona Controls
28021 Grand Oaks Ct.
Wixom, MI 48393
248-924-2747

PART 2 - SYSTEM DESCRIPTION

2.1 Applicable Standards:

The UPS shall be designed in accordance with and be compliant with the following sections of the current revisions of the following standards:

- UL 1778/UL Listed
- FCC Class A, Article 47, Part 15.B
- ISO 900, ISO 14001
- ANSI C62.41
- NFPA – 70 National Electric Code
- OSHA

2.2 Components:
The UPS shall consist of the following components:

1. Multi-level IGBT AC/DC Rectifier
2. IGBT DC/DC Battery Converter/Charger
3. Multi-level IGBT DC/AC Inverter
4. Hybrid Integral Static Bypass (Thyristor switch with wrap around contactor)
5. Microprocessor Logic and Control Panel
6. Battery Cabinets with DC Breaker
7. Maintenance Bypass Panel (Circuit Breakers)
8. RemotEye II UPS remote communications and web-based monitor card
9. Network communications with MODBUS interface adapter

2.3 System Operation:

The UPS shall operate as a fully automatic on-line system in the following modes:

1. Normal

IGBT Rectifier converts AC input power to DC power for the inverter and for charging the batteries. The IGBT inverter supplies clean and stable AC power continuously to the critical load. The UPS Inverter output shall be synchronized with the bypass AC source when the bypass source is within the AC input voltage and frequency specifications.

2. Loss of Main Power

When Main Power is lost, the batteries shall automatically back up the inverter so there is no interruption of AC power to the critical load.

3. Return of Main Power

The system shall recover to the operating mode in Item 1 and shall cause no disturbance to the critical load while simultaneously recharging the backup battery.

4. Transfer to Bypass AC source

If the UPS becomes overloaded the UPS controls shall automatically transfer the critical load from the inverter output to the bypass AC source without interruption. When the overload condition is removed, after a preset “hold” period the UPS will automatically retransfer the critical load from the bypass to the inverter output without interruption of power to the critical load.
5. Maintenance Bypass

An optional manual make-before-break maintenance bypass panel may be provided to electrically isolate the UPS for maintenance or test without affecting load operation. This bypass mode when selected facilitates testing or repair intervals.

PART 3 - GENERAL CONDITIONS FOR INSTALLATION

3.1 Required Output Capacity:

The 160 kVA (144 KW) UPS unit shall be capable of being operated either independently or connected in parallel.

3.2 UPS Environment:

3.2.1 Standard Environmental Parameters

- Operating Temperature Allowance: 77°F +/-3°F (25°C) Environ within enclosure
- Operating Temperature: 32°F to 104°F (0° to 40°C)
- Operating Humidity: 5 - 95% (Non-condensing)
- Altitude: 7400 ft. (2250 m) (without derating)

3.2.2 Discharge Heat from UPS at full load:

160 kVA: $\geq 19,400$ Btu/Hr

3.2.3 Grounding System:

It is necessary that UPS electrical loads be grounded to the same facility ground as the UPS ground, and that ground wiring shall be for the exclusive use of the UPS and load. Ground wiring for resistance shall be less than ≤ 10 Ohms between the facility ground net and the UPS.

3.2.4 Clearances for installation

- Ceiling Level: 20” minimum from top of UPS to ceiling
- Front: 40” minimum for maintenance (Local and regional codes may apply)
- Bottom: Knockouts for power cable access
- Rear: Zero clearance possible
- Sides: Zero clearance if using bottom cable
3.2.5 Cable Access

160 kVA : Bottom access standard
: Side knockouts for left/right side access standard (For use with Optional Side Car)

3.2.6 Seismic Mount Provisions
: Manufacturer to specify installation geometry requirements.
(Detroit BOCA inputs basis)

PART 4 - SYSTEM PARAMETERS

4.1 UPS Requirements:

4.1.1 General Requirements:

Rated Output Capacity : 160 kVA
(144 kW)
AC/DC Rectifier Type : AC/DC multi-level IGBT Rectifier
DC/AC Inverter Type : DC/AC multi-level IGBT Inverter
External Dimensions
160 kVA : 35.4 in. x 32.8 in. x 78.7 (80.6*) in.
* Unit height with fan assembly installed

Weight
160 kVA : 1160 lbs

Paint Color : Black (Munsell N1.5)

4.1.2 AC Input:

Configuration : 3-Phase/3-Wire + Ground
Rated Voltage : 480V
Voltage Variation : +15% to –20%
Rated Frequency : 60Hz
Frequency Variation : +/-10%

Input Power Factor : Greater than 0.99 lagging at 25%-115% load
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 160kVA/144KW UPS Unit

Current THD : 3% maximum THD at 60%–
100% load 6% maximum THD
at 25%–59% load (No input
harmonic filter required)

4.1.3 Charging Function:

DC Nominal Voltage : 480 V
AC Ripple on DC Bus : < 0.2% of DC Voltage
DC Voltage Range : 400 V to 545 V
DC Float Charging Voltage : 545 V Maximum charging current:
160 kVA : 40 A
100 kVA : 0.23%

4.1.4 Bypass Input:

Configuration : 3-Phase/3-Wire + Ground
Rated Voltage : 480 V
Input Voltage Synchronous Range : +/-10%
Rated Frequency : 60Hz
Frequency Variation : +/-5%
Frequency Synchronous Range : +/-1 – 5% (0.6 – 3.0 Hz) Selectable
Bypass Overload Capacity : 1000% for one cycle

4.1.5 AC Output: Configuration

Configuration : 3-Phase/3-Wire + Ground
Rated Capacity : 160 kVA (144 kW)
Rated Voltage : 480 V
Efficiency at % Full Load : 20% 40% 60% 80% 100%
160 kVA : 94.6% 96.2% 96.2% 96.2% 96.2%
Voltage Regulation : +/-1% (0-100% Unbalanced Load)
: +/-1% (0-100% Balanced Load)
Voltage Adjustment Range : +/-3%
Rated Frequency : 60 Hz
Frequency Regulation : +/-0.01% (Free-Running Mode)
Frequency Slew Rate : +/-1.0 Hz/s to +/-5.0 Hz/s (Selectable)
Rated Load Power Factor : 0.9 PF lagging
Overload Capacity (Inverter) : 125% for 2 min.,
150% for 1 min.
Harmonic Voltage Distortion : 2% maximum THD (100% Linear Load)
PART 5 - FUNCTIONAL DESCRIPTION

The UPS shall protect the load against surges, sags, undervoltage, and voltage fluctuation. The UPS shall have built-in protection against permanent damage to itself and the connected load for all predictable types of malfunctions. The load shall be automatically transferred to the bypass line without interruption in the event of an internal UPS malfunction. The status of protective devices shall be indicated on a LCD graphic display screen on the front of the UPS.

5.1 IGBT Rectifier

5.1.1 General

A solid-state, multi-level IGBT Rectifier shall convert the incoming AC power into DC power to supply the inverter input and system battery.

5.1.2 Voltage Regulation

The rectifier output voltage shall not deviate by more than +/- 1.0% RMS under the following conditions:
- 0% - 100% loading (balanced and unbalanced non-transient loading)
- +15% – 20% utility voltage change
- +/-10.0% utility frequency change

5.1.3 Reflected Harmonic Content

Input current THD shall be:
- 3% maximum at 60%-100% load
- 6% maximum at 25%-59% load.

5.2 IGBT DC-DC Converter

5.2.1 General

A solid-state IGBT Battery Converter/Charger shall control battery charging.
5.2.2 Battery Charge Current Limit

The Converter logic shall provide DC for controlled battery charging. The battery current sensing shall be independent of the Converter DC Output current sensing to provide precise battery recharging control. The DC/DC Charging Converter shall include a circuit to regulate the battery charging current to between 100% and 125% of maximum battery charging current.

5.2.3 Battery Protection

The converter shall be provided with monitoring and control circuits to protect the battery system from damage due to excessive discharge. Converter shutdown shall be initiated when the battery voltage reaches a discharge cutoff voltage of 400 VDC. Automatic shutdown based on discharge time is not acceptable.

5.2.4 DC Ripple (Without batteries)

AC Ripple on the DC Bus shall be less than 0.2%.
AC Ripple on the Battery charging circuit shall be less than 0.23% for the 160 kVA UPS.

5.3 IGBT Inverter:

5.3.1 General

The inverter shall be composed of multi-level IGBT power transistors controlled utilizing an Advanced Technology PWM logic. The Inverter shall continuously convert DC power from the IGBT Rectifier to AC power for the critical loads. When the utility voltage or frequency exceeds the specified UPS input tolerances, the inverter shall continuously convert DC power from the battery source to AC power for the critical load.

The inverter shall be capable of providing rated output while operating at any battery voltage within the battery operating range. When the DC battery voltage reaches the operational low voltage limit during a loss of utility AC power, the inverter shall automatically shut off.

5.3.2 Output Voltage

The Inverter output voltage shall not deviate by more than +/- 1.0% RMS under the following steady state conditions as the Inverter DC input voltage varies from maximum to cutoff:
- 0% to 100% Unbalanced load
- 0% to 100% Balanced load

5.3.3 Synchronization
The Inverter output voltage shall be automatically synchronized with the bypass AC source as long as the source is within the tolerable frequency and voltage range. If the bypass AC source is not within the range, the control circuitry will stop synchronization and operate the inverter in free running mode. When the bypass AC source recovers to within tolerance, the inverter shall change its frequency (slew rate 1 to 5 Hz/sec, selectable) and track the bypass AC source until synchronization is achieved without causing any disturbance to the load.

5.3.4 Output Control

The Inverter can be manually started and stopped using the LCD touch screen controls.

5.3.5 Overload Capacity:

The Inverter output shall be capable of providing an overload current of 125% for 2 min. and 150% for 1 min. A message on the control panel shall indicate this condition. If the time limit associated with the overload condition expires, or the overload is in excess of the set current limit, the load power shall transfer to the bypass source without interruption.

5.4 Static Bypass Circuit:

5.4.1 General:

An integral static bypass circuit shall be provided to supply an alternate source of power to the critical load in the event the inverter cannot supply rated output power. The bypass circuit shall be capable of supplying the UPS rated load current and accommodate fault clearing.

The 100% duty rated static bypass panel shall be composed of a thyristor switch with a wrap-around contactor. The thyristor switch shall be a high-speed transfer device. The wrap-around contactor shall be electrically connected in parallel to the thyristor switch and shall, at the same time as the thyristor switch, be energized and, upon closure, maintain the bypass source to the load to improve the efficiency and reliability of the system. The thyristor switch shall only be utilized for the time needed to energize the contactor closure.

The UPS system logic shall employ sensing which shall cause the thyristor switch to energize and provide an uninterrupted transfer of the load to the bypass source when any of the following limitations are exceeded:

- Inverter output undervoltage or overvoltage.
- Overloads exceeding 125% for 2 min., or 150% for 1 min.
- DC circuit undervoltage or overvoltage.
- Final discharge voltage of system battery is reached and the bypass source is present, available, and within tolerance range.
Transferring the output from the inverter to the bypass source and vice versa shall be performed by pressing “START/STOP” icon on the touchscreen display.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Transfer mode</th>
<th>Transfer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic</td>
<td>Inverter to Bypass (Overload, Internal Fault)</td>
<td>Synchronized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unsynchronized</td>
</tr>
<tr>
<td>“BYPASS” switch operated</td>
<td>Inverter to Bypass</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrupted (forced transfer)</td>
</tr>
<tr>
<td>Automatic</td>
<td>Bypass to Inverter (Auto-Retransfer Mode)</td>
<td>Uninterrupted</td>
</tr>
<tr>
<td>“UPS” switch operated</td>
<td>Bypass to Inverter</td>
<td>Transfer inhibited</td>
</tr>
</tbody>
</table>

If the bypass source is beyond the conditions stated below, interrupted transfer shall be made upon detection of a fault condition.

- Bypass voltage greater than +10%, -10% from the UPS rated output voltage.
- Bypass frequency exceeds ±3 Hz from the UPS rated output frequency.

5.4.2 Overload Capacity in Bypass:
- Continuous duty : 125% of the system rated capacity
- Overload duty : 1000% of ampere rating for 1 cycle.

5.4.3 Retry function:

When an internal warning/failure has been detected, power flow shall automatically switch from the main circuit (inverter) to the bypass circuit without interruption to the load. If the internal warning is cleared, UPS shall automatically switch the power flow from the bypass circuit to the main circuit (inverter) without interruption.

5.5 Metering, Monitoring, Alarms, and Controls

5.5.1 Status Indicators

The Front Panel shall include LED status indicators for the following states:
- Load on Inverter
- Battery Operation
- Load on Bypass Overload
- LCD Fault
- UPS Fault
5.5.2 EPO (Emergency Power Off) Button

The Front Panel shall have an Emergency Power Off button (EPO) located on the front panel that, when pressed, will shut down the UPS.

5.5.3 Liquid Crystal Display (LCD) Touch Panel

The Front Panel shall include a LCD touch panel that shall provide performance data, statistics, and operating conditions. The following metering will be displayed on LCD touch panel:
- AC Input Voltage
- AC Input Frequency
- AC Output Voltage
- AC Output Current
- AC Output Frequency
- Battery DC Voltage
- Battery DC Current
- AC Bypass Voltage
- AC Bypass Frequency

5.5.4 Mimic Panel

A one-line diagram of the system shall be displayed on the touch panel display panel to provide a visual status of contactors within UPS. The panel shall display the followings:
- AC Input, DC Input
- Rectifier in Operation
- Inverter in Operation
- UPS/Bypass supply
- Battery Operating Condition (float charge/discharge)
- Fault, Warning
- Operation Guidance (LCD Display)
- Fault Guidance (LCD Display)

5.5.5 Isolated Control Signals

Ten (10) Normally Open isolated annunciation signal outputs for remote use will be furnished. Eight (8) alarms shall be user programmable, and shall be factory default set as follows:
- Summary Alarm
- Output 1: Load on Bypass
- Output 2: Load on Inverter
- Output 3: Battery Operation
- Output 4: Rectifier Operation
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 160kVA/144KW UPS Unit

Output 5: Battery Low Voltage
Output 6: Overload
Output 7: Spare
Output 8: Total alarm
Output Contactor Closed

Contact rating:
Output: 1 A @ 30 VDC.
Input: 24 VDC

UPS module accepts remote switches to initiate the following remote operations. These contacts shall be field supplied):
Remote Start
Remote Stop
Battery Temperature High
Power Demand
Remote Emergency Power Off (EPO)

Contact rating:
Input: 24 VDC

The contact signal inputs and outputs shall be wired to a terminal block located inside the UPS.

PART 6 - MECHANICAL DESIGN

6.1 UPS Enclosure Sections

The UPS shall be a freestanding NEMA1 enclosure equipped with a leveling channel base. The enclosure shall include provisions for hoisting, jacking, and forklift handling.

6.2 The seismic structural mounting requirements (welded or bolted) shall be detailed for each/all cabinet modules.

6.3 Cable Access

Cable access to the UPS shall be
- Bottom entry
- Side entry when using optional side cabinet
- Top entry when using optional side cabinet

PART 7 - WARRANTY

7.1 UPS Warranty
The UPS system shall come with a comprehensive two year on-site warranty on all mechanical, electrical, electronic components. Parts, labor, freight and travel are included during warranty period.

7.2 UPS Battery Warranty

The battery system shall come with a full two-year warranty with 3 year’s prorata total of five years. Parts, labor, and travel are included during warranty period.

7.3 Warranty Support Availability

Typical on-site response time shall be 4 hours (24 hours maximum).

7.4 UPS Service Agreement

UPS Preferred Vendor status has already been determined by the Owner. And, thus in addition to warranty requirements listed herein, additional warranty and service requirements shall apply.

PART 8 - BATTERY CABINETS

The UPS manufacturer will provide matching battery cabinets with DC breaker.

PART 9 - COMMUNICATIONS

9.1 RemotEye II Network Adapter

The UPS shall provide either an internal or external support for an internet web/SNMP adapter RemotEye II. for the optional capability of remote or internet system monitoring.

9.1.1 SNMP Ability

RemotEye II shall provide a SNMP interface for the UPS. The SNMP interface shall provide for easy integration of UPS management into an existing SNMP Network Management System. At any given time, SNMP queries shall be able to poll the RemotEye II agent for the current status of its connected UPS.

9.1.2 HTTP Familiarity

The RemotEye II shall provide a HTTP interface for the UPS to allow easy access of the UPS information from any machine with a web browser. At any time, a network
workstation or management station shall be able to open a RemotEye II website. RemotEye II website shall enable the UPS system information to be configured and monitored remotely. RemotEye II shall provide access to 3 java applets for monitoring, event logging, and trend analysis.

9.1.3 Shutdown Capability

The RemotEye II application software shall allow RemotEye II to remotely notify and shutdown selected network servers.

<table>
<thead>
<tr>
<th>Network Adapter/External Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD 188ES-20MHz</td>
</tr>
<tr>
<td>512kB SRAM: 512kB Flash</td>
</tr>
<tr>
<td>Two asynchronous serial ports</td>
</tr>
<tr>
<td>10 BaseT RJ-45 connector</td>
</tr>
<tr>
<td>Manufacturer’s UPS communication protocol</td>
</tr>
<tr>
<td>SNMP over UDP/IP : HTTP over TCP/IP:ARP, RARP, TFTP and ICMP</td>
</tr>
<tr>
<td>MIB_II : Manufacturer v1.2_MIB :JEM MIB : RFC 1628</td>
</tr>
<tr>
<td>Traffic LED for network : Status LED for status : Power LED for Power</td>
</tr>
<tr>
<td>2 digit (default setting is Switches 1 and 2 off)</td>
</tr>
<tr>
<td>Temperature Range: 0 – 40 °C</td>
</tr>
<tr>
<td>Relative Humidity: 10 – 80 %</td>
</tr>
<tr>
<td>Power Requirements: 12 VDC ungrounded</td>
</tr>
<tr>
<td>2.0 Watts Maximum</td>
</tr>
<tr>
<td>Dimensions: 5.28"(134mm) x 3.40"(86mm) x 1.10"(27mm) (LxWxH)</td>
</tr>
<tr>
<td>Weight: 0.38lbs(170g)</td>
</tr>
</tbody>
</table>

PART 10 – NOT USED

PART 11 - MAINTENANCE BYPASS PANEL

The manufacturer can optionally provide a MBS (Maintenance Bypass Panel) for the UPS.

11.1 Site Installation

The MBS can be available in a floor mount cabinet configuration.

11.2 Electrical Configuration
The MBS can be available in two, three, or four breaker configurations.

11.3 Mechanical Interlock

The MBS can have the option for a two-kirk-key interlock system.

11.4 External Maintenance Bypass:
- A manually operated maintenance bypass panel can be provided to bypass the power feeding the critical load from inverter to a static switch panel without causing any power interruption.
- Bypass input breaker can supply input power to the UPS module static bypass input. If the system design calls for separate UPS and bypass inputs, a bypass input breaker can be installed on each input.
- UPS maintenance bypass breaker can allow power flow to the load when the UPS is bypassed. This can be a normally open circuit breaker.
- The UPS module output can feed the UPS output isolation breaker.
- Optionally, the two input bypass breaker can be used to feed both the UPS converter input and the UPS bypass input.

PART 12 – NOT USED

PART 13 – NOT USED

PART 14 - EXTENDED SERVICES

14.1 The UPS supplier will provide:
- UPS Start-Up
 - Start-up services to be performed by WSU preferred vendor (Ancona Controls)
 - 160 kVA 69000 UPS system startup
 - 14 days advance notice Monday-Friday, 8am-5pm
 - Required for standard 3 year warranty and extended warranty packages
 - All services are to be performed during normal business hours (Mon-Fri: 8am to 5pm)
 - Start-up does not include any rigging or installation as typically performed by a qualified electrical contractor
 - Batter cabinet startup has to be performed in conjunction/concurrent with UPS startup
 - Load banking services may be separate and must be coordinated with factory 6 weeks in advance

14.2 The UPS supplier resource may offer:
- Maintenance Contracts
- Preventive Maintenance Contracts
• Spare-parts kits
• Extended warranty coverage for up to an additional 2 years
• Enhanced warranty contract (24/7 + Holiday coverage)
• Load bank testing by Qualified Testing Agency
• Factory witness testing
• Site monitor and power audits

PART 15 – DOCUMENT TRANSMITTALS AND DATA HANDLING

15.1 ACTION SUBMITTALS

15.1.1 Product Data: For each type of product indicated. Include data on features, components, electrical duration ratings, and performance.

15.1.2 Shop Drawings: For UPS. Include plans, elevations, sections, details, and attachments to other work.
 • Detail equipment assemblies and indicate dimensions, weights, components, and location and identification of each field connection. Show operations and termination access, workspace, and clearance requirements; details of control display panels; and battery arrangement.
 • Wiring Diagrams: For power, signal, and control wiring. (one-line with all secondary and monitoring circuit equipment details).
 • Provide heat resection rate data. (consider a 73°F +/- 3°F enclosure space).
 • Provide wet cell storage battery hydrogen evolution into a closed space. State ventilation requirement data. (consider a 73°F +/- 3°F environment).

15.2 INFORMATIONAL SUBMITTALS

15.2.1 Qualification Data: For qualified testing agency provide the test QA results data.

15.2.2 Seismic Qualification Certificates: For UPS equipment, from manufacturer.
 • Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 • Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 • Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

15.2.3 Manufacturer Certificates: For each product, from manufacturer.

15.2.4 Factory Test Reports: Comply with specified requirements.
15.2.5 Field quality-control reports.

15.2.6 Performance Test Reports: Indicate test results compared with specified performance requirements, and provide justification and resolution of differences if values do not agree.

15.2.7 Warranties: Sample of special warranties.

15.3 CLOSEOUT SUBMITTALS

15.3.1 Operation and Maintenance Data: For UPS units to include in emergency, operation, and systems maintenance manuals.

15.4 MAINTENANCE MATERIAL SUBMITTALS

15.4.1 Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - Fuses: Three each for each type and rating.
 - Cabinet Ventilation Filters: Two complete set(s).

15.5 QUALITY ASSURANCE

15.5.1 Power Quality Specialist Qualifications: A registered professional electrical engineer or engineering technician, currently certified by the National Institute for Certification in Engineering Technologies, NICET Level 4, minimum, experienced in performance testing UPS installations and in performing power quality surveys similar to that required in "Performance Testing" Article.

15.5.2 Testing Agency Qualifications: Member company of NETA or an NRTL.
 - Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

15.5.3 Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

15.5.4 UL Compliance: Listed and labeled under UL 1778 by an NRTL.

15.5.5 NFPA Compliance: Mark UPS components as suitable for installation in computer rooms according to NFPA 75.

PART 16 – QUALITY PROGRAM INSTALLATION AND TESTING RESULTS REQUIREMENTS
16.1 BATTERY QUALITY CONTROL

16.1.1 Factory test complete UPS system before shipment. Use actual batteries that are part of final installation battery testing. Include the following:

- Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
- Full-load test.
- Transient-load response test.
- Overload test.
- Power failure test.

16.1.2 Observation of Factory Test: Give 14 days' advance notice of tests and provide opportunity for Owner's representative to observe tests at Owner's choice. WSU site test demonstrations shall be conducted during the Monday through Friday normal work week between 0830-1700 hours. WSU will observe testing. The seller shall submit the QA program test plan for WSU acceptance.

16.1.3 Report factory test results. Include the following data:

- Description of input source and output loads used. Describe actions required to simulate source load variation and various operating conditions and malfunctions.
- List of indications, parameter values, and system responses considered satisfactory for each test action. Include tabulation of actual observations during test.
- List of instruments and equipment used in factory tests.

16.2 FIELD QUALITY CONTROL

16.2.1 Testing Agency: Engage a factory-authorized qualified testing agency to perform tests and inspections.

16.2.2 Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

16.2.3 Perform tests and inspections.

- Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

16.2.4 Tests and Inspections:
• Comply with manufacturer's written instructions.
• Inspect interiors of enclosures, including the following:
 o Integrity of mechanical and electrical connections.
 o Component type and labeling verification.
 o Ratings of installed components.
• Inspect batteries and chargers according to requirements in NETA Acceptance Testing Specifications.
• Test manual and automatic operational features and system protective and alarm functions.
• Test communication of status and alarms to remote monitoring equipment.
• Load the system using a variable-load bank to simulate kilovolt amperes, kilowatts, and power factor of loads for the UPS unit's rating. Use instruments calibrated within the previous six months according to NIST standards.
 o Simulate malfunctions to verify protective device operation.
 o Test duration of supply on emergency, low-battery voltage shutdown, and transfers and restoration due to normal source failure.
 o Test harmonic content of input and output current less than 25, 50, and 100 percent of rated loads.
 o Test output voltage under specified transient-load conditions.
 o Test efficiency at 50, 75, and 100 percent of rated loads.
 o Test remote status and alarm panel functions.
 o Test battery-monitoring system functions.

16.2.5 Seismic-restraint tests and inspections shall include the following:
• Inspect type, size, quantity, arrangement, and proper installation of mounting or anchorage devices.
• Test mounting and anchorage devices according to requirements in Section 260548.16 "Seismic Controls for Electrical Systems."

16.2.6 The UPS system will be considered defective if it does not pass all tests and inspections.

16.2.7 Record of Tests and Inspections: Maintain and submit documentation of tests and inspections, including references to manufacturers’ written instructions and other test and inspection criteria. Include results of tests, inspections, and retests.

16.2.8 Prepare test and inspection reports.
16.3 PERFORMANCE TESTING

16.3.1 Engage the services of a factory authorized qualified power quality specialist to perform tests and activities indicated for each UPS system.

16.3.2 Monitoring and Testing Schedule: Perform monitoring and testing in a single 10-day period scheduled for the: 160 KVA/144 KW Chemistry Building,
- Schedule monitoring and testing activity with Owner, through Architect, with at least 14 days' advance notice.
- Schedule monitoring and testing after Substantial Completion, when the UPS is supplying power to its intended load.

16.3.3 Monitoring and Testing Instruments: Three-phase, recording, power monitors. Instruments shall provide continuous simultaneous monitoring of electrical parameters at UPS input terminals and at input terminals of loads served by the UPS. Instruments shall monitor, measure, and graph voltage current and frequency simultaneously and provide full-graphic recordings of the values of those parameters before and during power-line disturbances that cause the values to deviate from normal beyond the adjustable threshold values. Instruments shall be capable of recording either on paper or on magnetic media and have a minimum accuracy of plus or minus 2 percent for electrical parameters. Parameters to be monitored include the following:
- Current: Each phase and neutral and grounding conductors.
- Voltage: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
- Frequency transients.
- Voltage swells and sags.
- Voltage Impulses: Phase to phase, phase to neutral, phase to ground, and neutral to ground.
- High-frequency noise.
- Radio-frequency interference.
- THD of the above currents and voltages.
- Harmonic content of currents and voltages above.

16.3.4 Monitoring and Testing Procedures:
- Exploratory Period: For the first two days of the first scheduled monitoring and testing period, make recordings at various circuit locations and with various parameter-threshold and sampling-interval settings. Make these measurements with the objective of identifying optimum UPS, power system, load, and instrumentation setup conditions for subsequent test and monitoring operations.
- Remainder of Test Period: Perform continuous monitoring of at least two circuit locations selected on the basis of data obtained during exploratory period.
 - Set thresholds and sampling intervals for recording data at
values selected to optimize data on performance of the UPS for values indicated, and to highlight the need to adjust, repair, or modify the UPS, distribution system, or load component that may influence its performance or that may require better power quality.

- Perform load and UPS power source switching and operate the UPS on generator power during portions of test period according to directions of Owner’s power quality specialist.
- Operate the UPS and its loads in each mode of operation permitted by UPS controls and by the power distribution system design.
- Using loads and devices available as part of the facility’s installed systems and equipment and a temporarily connected portable generator set, create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.
- Using temporarily connected resistive/inductive load banks, create and simulate unusual operating conditions, including outages, voltage swells and sags, and voltage, current, and frequency transients. Maintain normal operating loads in operation on system to maximum extent possible during tests.
- Make adjustments and repairs to UPS, distribution, and load equipment to correct deficiencies disclosed by monitoring and testing and repeat appropriate monitoring and testing to verify success of corrective action.

16.3.5 Coordination with Specified UPS Monitoring Functions: Obtain printouts of built-in monitoring functions specified for the UPS and its components in this Section that are simultaneously recorded with portable instruments in this article.

- Provide the temporary use of an appropriate PC and printer equipped with required connections and software for recording and printing if such units are not available on-site.
- Coordinate printouts with recordings for monitoring performed according to this article, and resolve and report any anomalies in and discrepancies between the two sets of records.

16.3.6 Monitoring and Testing Assistance by Contractor:

- Open UPS and electrical distribution and load equipment and wiring
enclosures to make monitoring and testing points accessible for temporary monitoring probe and sensor placement and removal as requested.

- Observe monitoring and testing operations; ensure that UPS and distribution and load equipment warranties are not compromised.
- Perform switching and control of various UPS units, electrical distribution systems, and load components as directed by power quality specialist. Specialist shall design this portion of monitoring and testing operations to expose the UPS to various operating environments, conditions, and events while response is observed, electrical parameters are monitored, and system and equipment deficiencies are identified.
- Make repairs and adjustments to the UPS and to electrical distribution system and load components, and retest and repeat monitoring as needed to verify validity of results and correction of deficiencies.
- Engage the services of the UPS manufacturer's factory-authorized service representative periodically during performance testing operations for repairs, adjustments, and consultations.

16.3.7 Documentation: Record test point and sensor locations, instrument settings, and circuit and load conditions for each monitoring summary and power disturbance recording. Coordinate simultaneous recordings made on UPS input and load circuits.

16.3.8 Analysis of Recorded Data and Report: Review and analyze test observations and recorded data and submit a detailed written report. Include the following in each report:
- Description of corrective actions performed during monitoring and survey work and their results.
- Recommendations for further action to provide optimum performance by the UPS and appropriate power quality for non-UPS loads. Include a statement of priority ranking and a cost estimate for each recommendation that involves system or equipment revisions.
- Copies of monitoring summary graphics and graphics illustrating harmonic content of significant voltages and currents.
- Copies of graphics of power disturbance recordings that illustrate findings, conclusions, and recommendations.
- Recommendations for operating, adjusting, or revising UPS controls.
- Recommendation for alterations to the UPS installation.
- Recommendations for adjusting or revising generator-set or automatic transfer switch installations or their controls.
- Recommendations for power distribution system revisions.
- Recommendations for adjusting or revising electrical loads, their connections, or controls.

16.3.9 Interim and Final Reports: Provide an interim report at the end of each test period and a final comprehensive report at the end of final test and analysis period.
16.4 DEMONSTRATION

16.4.1 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the UPS.

TOSHIBA Static Uninterruptible Power Supply Data Sheet

I. State model number data: each cabinet, (include dimensions and weight data)
 a. UPS 160 kVA/144 kW power Electronics cabinet
 b. Battery Storage Cabinet
 c. Maintenance Bypass Switch Cabinet
 d. Remote Communication Module Features: RMTI-EXT-R4
 e. UPSTARTUP160G9 Services

II.

| Input Power Parameter Data: |
|---------------|----------------|----------------|
| Voltage/Wiring Features | |
| Voltage Range/Variation | |
| Power Factor | |
| Current THD Harmonics | |
| Frequency/Variation | |

| Output Power Parameter Data: |
|---------------|----------------|----------------|
| Voltage/Wiring Features | |
| Frequency/Variation | |
| Voltage Regulation | |
| Power Factor: LAG | |
| Voltage THD | |
| Overload, Inverter 120sec/60sec | |
| Overload, Bypass | |

III. State environment operating parameter requirements:
 - Temperature
 - Humidity
 - Noise
STATIC THREE PHASE UNINTERRUPTIBLE POWER SUPPLY

TOSHIBA G9000 160kVA/144KW UPS Unit

- Heat rejection
- Efficiency ratings data
- Seismic

Static Uninterruptible Power Supply Data Sheet

IV. System Topology: State UPS Description Data: _________________
V. State UPS battery features and operation life features.
VI. State UPS monitoring, alarm, control interface switch features and signal handling provision.
VII. State UPS international and national standards compliance adherence data (e.g: UL ISO ANSI IEEE, other NFPA-NEC)
VIII. State UPS warranty duration and features.

END OF SECTION 263353