WAYNE STATE UNIVERSITY
SHAPERO HALL
SWITCHBOARD REPLACEMENT

WSU PROJECT NO. 050-290613

ISSUED FOR 95% OWNER REVIEW 03/06/2017

Wayne State University
Facilities Planning & Management
Design & Construction Services
1444 Woodward Ave.
Detroit, MI 48202
WSU PROJECT NO. 050-280613

Peter Basso Associates Inc
CONSULTING ENGINEERS
5145 Livernois, Suite 100
Troy, Michigan 48098-3276
Tel: 248-879-5666
Fax: 248-879-0007
www.PeterBassoAssociates.com
WSU PROJECT NO. 2017.0159

CAMPUS MAP

PROJECT LOCATION

Principio de lectura natural, no hay necesidad de generación de texto natural.
SPECIFICATIONS GROUP

DIVISION 26 - ELECTRICAL
260010 ELECTRICAL GENERAL REQUIREMENTS
260519 CONDUCTORS AND CABLES
260526 GROUNDING AND BONDING
260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533 RACEWAYS AND BOXES
260543 UNDERGROUND DUCTS AND UTILITY STRUCTURES
260553 ELECTRICAL IDENTIFICATION
260573 OVERCURRENT DEVICE COORDINATION STUDY/ARC FLASH HAZARD ANALYSIS
260999 ELECTRICAL TESTING
262413 SWITCHBOARDS
262813 FUSES
262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
264313 SURGE PROTECTIVE DEVICES

END OF TABLE OF CONTENTS
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SUMMARY

 A. This Section includes electrical general administrative and procedural requirements. The following requirements are included in this Section to supplement the requirements specified in Division 1 Specification Sections.

1.3 REFERENCES

 A. All materials shall be new. The electrical and physical properties of all materials, and the design, performance characteristics, and methods of construction of all items of equipment, shall be in accordance
with the latest issue of the various, applicable Standard Specifications of the following recognized authorities:

1. A.N.S.I. - American National Standards Institute
2. A.S.T.M. - American Society for Testing Materials
3. I.C.E.A. - Insulated Cable Engineers Association
4. I.E.E.E. - Institute of Electrical and Electronics Engineers
5. N.E.C. - National Electrical Code
6. N.E.C.A. - National Electrical Contractors Association
7. N.E.M.A. - National Electrical Manufacturer's Association
8. U.L. - Underwriters Laboratories, Inc.

1.4 QUALITY ASSURANCE

A. Scope of Work: Furnish all labor, material, equipment, technical supervision, and incidental services required to complete, test and leave ready for operation the electrical systems as specified in the Division 26 Sections and as indicated on Drawings.

1. Contract Documents are complimentary, and what is required by one shall be as binding as if required by all. In the event of inconsistencies or disagreements within the Construction Documents bids shall be based on the most expensive combination of quality and quantity of the work indicated.
2. The Contractor understands that the work herein described shall be complete in every detail.

B. Ordinances and Codes: Perform all Work in accordance with applicable Federal, State and local ordinances and regulations, the Rules and Regulations of NFPA, NECA, and UL, unless otherwise indicated.

1. Notify the Architect/Engineer before submitting a proposal should any changes in Drawings or Specifications be required to conform to the above codes, rules or regulations. After entering into Contract, make all changes required to conform to above ordinances, rules and regulations without additional expense to the Owner.

C. Source Limitations: All equipment of the same or similar systems shall be by the same manufacturer.

D. Tests and Inspections: Perform all tests required by state, city, county and/or other agencies having jurisdiction. Provide all materials, equipment, etc., and labor required for tests.

E. Performance Requirements: Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the trades involved.

F. Sequence and Schedule: Work so as to avoid interference with the work of other trades. Be responsible for removing and relocating any work which in the opinion of the Owner’s Representatives causes interference.

1.5 CODES, PERMITS AND FEES

A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for electrical work shall be secured and paid for by the Contractor. All work shall conform to all applicable codes, rules and regulations.

B. Rules of local utility companies shall be complied with. Coordinate with the utility company supplying service to the installation and determine all devices including, but not limited to, all current and potential transformers, meter boxes, C.T. cabinets and meters which will be required and include the cost of all such items and all utilities costs in proposal.
C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed Drawings or diagrams which may be required by the governing authorities. Where the Drawings and/or Specifications indicate materials or construction in excess of code requirements, the Drawings and/or Specifications shall govern.

1.6 DRAWINGS

A. The Drawings show the location and general arrangement of equipment, electrical systems and related items. They shall be followed as closely as elements of the construction will permit.

B. Examine the Drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly, providing such fittings, conduit, junction boxes and accessories as may be required to meet such conditions.

C. Deviations from the Drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.

D. The architectural and structural Drawings take precedence in all matters pertaining to the building structure, mechanical Drawings in all matters pertaining to mechanical trades and electrical Drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the Drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.

E. Drawings are not intended to be scaled for rough-in or to serve as shop drawings. Take all field measurements required to complete the Work.

1.7 MATERIAL AND EQUIPMENT MANUFACTURERS

A. All items of equipment shall be furnished complete with all accessories normally supplied with the catalog items listed and all other accessories necessary for a complete and satisfactory operating system. All equipment and materials shall be new and shall be standard products of manufacturers regularly engaged in the production of electrical equipment and shall be of the manufacturer's latest design.

B. If an approved manufacturer is other than the manufacturer used as the basis for design, the equipment or product provided shall be equal in size, quality, durability, appearance, capacity, and efficiency through all ranges of operation, shall conform with arrangements and space limitations of the equipment shown on the plans and/or specified, shall be compatible with the other components of the system and shall comply with the requirements for Items Requiring Prior Approval specified in this section of the Specifications. All costs to make these items of equipment comply with these requirements including, but not limited to, electrical work, and building alterations shall be included in the original Bid. Similar equipment shall be by one manufacturer.

C. Where existing equipment is modified to include new switches, circuit breakers, metering or other components, the new components shall be by the original equipment manufacturer and shall be listed for installation in the existing equipment. Where original equipment manufacturer components are not available, third party aftermarket components shall be listed for the application and submitted to the engineer for approval. Reconditioned or salvaged components shall not be used unless specifically indicated on the drawings.

1.8 INSPECTION OF SITE

A. Visit the site, examine and verify the conditions under which the Work must be conducted before submitting Proposal. The submitting of a Proposal implies that the Contractor has visited the site and understands the conditions under which the Work must be conducted. No additional charges will be
allowed because of failure to make this examination or to include all materials and labor to complete the Work.

1.9 ITEMS REQUIRING PRIOR APPROVAL

A. Bids shall be based upon manufactured equipment specified. All items that the Contractor proposes to use in the Work that are not specifically named in the Contract Documents must be submitted for review prior to bids. Such items must be submitted in compliance with Division 1 specifications. Requests for prior approval must be accompanied by complete catalog information, including but not limited to, model, size, accessories, complete electrical information and performance data in the form given in the equipment schedule on the drawings at stated design conditions. Where items are referred to by symbolic designations on the drawings, all requests for prior approval shall bear the same designations.

 1. Equipment to be considered for prior approval shall be equal in quality, durability, appearance, capacity and efficiency through all ranges of operation, shall fulfill the requirements of equipment arrangement and space limitations of the equipment shown on the plans and/or specified and shall be compatible with the other components of the system.

 2. All costs incurred to make equipment comply with other requirements, including providing maintenance, clearance, electrical, replacement of other components, and building alterations shall be included in the original bid.

B. Voluntary alternates may be submitted for consideration, with listed addition or deduction to the bid.

1.10 SHOP DRAWINGS/SUBMITTALS

A. Submit project-specific submittals for review in compliance with Division 1.

B. All shop Drawings shall be submitted in groupings of similar and/or related items (lighting fixtures, switchgear, etc.). Incomplete submittal groupings will be returned unchecked.

C. Provide detailed layout shop Drawings (on transparent media) of all lighting and power distribution systems, routing of conduits, combining of circuits, circuiting, details and related information necessary of installation and maintenance. After review by the Architect/Engineer, a copy of Drawings will be stamped and returned to the Contractor.

D. If deviations (not substitutions) from Contract Documents are deemed necessary by the Contractor, details of such deviations, including changes in related portions of the project and the reasons therefore, shall be submitted with the submittal for approval.

E. Submit for approval shop drawings for all electrical systems or equipment but not limited to the items listed below. Where items are referred to by symbolic designation on the Drawings and Specifications, all submittals shall bear the same designation (light fixtures). Refer to other sections of the electrical Specifications for additional requirements.

 1. Medium voltage switchgear
 2. Switchboards
 3. Fuses

1.11 COORDINATION DRAWINGS

A. Submit project specific coordination drawings for review in compliance with Division 1 Specification Sections.
1.12 OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS

A. Submit project specific Operation and Maintenance Instructional Manuals for review in compliance with Division 1 Specification Sections.

B. Provide complete operation and maintenance instructional manuals covering all electrical equipment herein specified, together with parts lists. Maintenance and operating instructional manuals shall be job specific to this project. Generic manuals are not acceptable. Four (4) copies of all literature shall be furnished for Owner and shall be bound in ring binder form. Maintenance and operating instructional manuals shall be provided when construction is approximately 75% complete.

C. The operating and maintenance instructions shall include a brief, general description for all electrical systems including, but not limited to:

1. Routine maintenance procedures.
2. Trouble-shooting procedures.
3. Contractor's telephone numbers for warranty repair service.
5. Recommended spare parts lists.
6. Names and telephone numbers of major material suppliers and subcontractors.
7. System schematic drawings on 8-1/2" x 11" sheets.

1.13 RECORD DRAWINGS

A. Submit record drawings in compliance with Division 1.

B. Contractor shall submit to the Architect/Engineer, record drawings on electronic media which have been neatly marked to represent as-built conditions for all new electrical work.

C. The Contractor shall keep accurate note of all deviations from the construction documents and discrepancies in the underground concealed conditions and other items of construction on field drawings as they occur. The marked up field documents shall be available for review by the Architect, Engineer and Owner at their request.

1.14 INSTRUCTION OF OWNER PERSONNEL

A. Before final inspection, instruct Owner's designated personnel in operation, adjustment, and maintenance of electrical equipment and systems at agreed upon times. A minimum of 8 hours of formal instruction to Owner's personnel shall be provided for each building. Additional hours are specified in individual specification sections.

B. Use operation and maintenance manuals as basis for instruction. Review contents of manual with personnel in detail to explain all aspects of operation and maintenance.

C. In addition to individual equipment training provide overview of each electrical system. Utilize the as-built documents for this overview.

D. Prepare and insert additional data in operation and maintenance manual when need for such data becomes apparent during instruction, or as requested by Owner.

1.15 WARRANTY

A. Warranty: Comply with the requirements in Division 1 Specification Sections. Contractor shall warranty that the electrical installation is free from defects and agrees to replace or repair, to the Owner's satisfaction, any part of this electrical installation which becomes defective within a period of one year (unless specified
otherwise in other Division 26 sections) from the date of substantial completion following final acceptance, provided that such failure is due to defects in the equipment, material, workmanship or failure to follow the contract documents.

B. Contractor shall be responsible for any temporary services including equipment and installation required to maintain operation as a result of any equipment failure or defect during warranty period.

C. File with the Owner any and all warranties from the equipment manufacturers including the operating conditions and performance capacities they are based on.

1.16 USE OF EQUIPMENT

A. The use of any equipment, or any part thereof for purposes other than testing even with the Owner's consent, shall not be construed to be an acceptance of the work on the part of the Owner, nor be construed to obligate the Owner in any way to accept improper work or defective materials.

B. Do not use Owner's lamps for temporary lighting except as allowed and directed by the Owner. Equip lighting fixtures with new lamps when the project is turned over to the Owner.

1.17 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."

D. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 DEMOLITION WORK

A. All demolition of existing electrical equipment and materials will be done by this Contractor unless otherwise indicated. Include all items such as, but not limited to, electrical equipment, devices, lighting fixtures, conduit, and wiring called out on the Drawings and as necessary whether such items are actually indicated on the Drawings or not in order to accomplish the installation of the specified new work.

B. In general, demolition work is indicated on the Drawings. However, the Contractor shall visit the job site to determine the full extent and character of this work.

C. Unless specifically noted to the contrary, removed materials shall not be reused in the work. Salvaged materials that are to be reused shall be stored safe against damage and turned over to the appropriate trade for reuse. Salvaged materials of value that are not to be reused shall remain the property of the Owner unless such ownership is waived. Items on which the Owner waives ownership shall become the property of the Contractor, who shall remove and legally dispose of same, away from the premises.

3.3 INSTALLATION OF EQUIPMENT

A. Install all equipment in strict accordance with all directions and recommendations furnished by the manufacturer. Where such directions are in conflict with the Drawings and Specifications, report such conflicts to the Architect/Engineer for resolution.

B. Device Location:

1. Allow for relocation prior to installation of wiring devices and other control devices, for example, receptacles, switches, fire alarm devices, and access control devices, within a 10-foot radius of indicated location without additional cost.

3.4 WORK IN EXISTING BUILDINGS

A. The Owner will provide access to existing buildings as required. Access requirements to occupied buildings shall be identified on the project schedule. The Contractor, once Work is started in the existing building, shall complete same without interruption so as to return work areas as soon as possible to Owner.

B. Adequately protect and preserve all existing and newly installed Work. Promptly repair any damage to same at Contractor's expense.

C. Consult with the Owner's Representative as to the methods of carrying on the Work so as not to interfere with the Owner's operation any more than absolutely necessary. Accordingly, all service lines shall be kept in operation as long as possible and the services shall only be interrupted at such time as will be designated by the Owner's Representative.

D. Prior to starting work in any area, obtain approval for doing so from a qualified representative of the Owner who is designated and authorized by the Owner to perform testing and abatement of all hazardous materials including but not limited to, asbestos. The Contractor shall not perform any inspection, testing,
containment, removal or other work that is related in any way whatsoever to hazardous materials under the Contract.

3.5 CHASES AND RECESSES
A. Provided by the architectural trades, but the Contractor shall be responsible for their accurate location and size.

3.6 CUTTING, PATCHING AND DAMAGE TO OTHER WORK
A. Refer to General Conditions for requirements.
B. All cutting, patching and repair work shall be performed by the Contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

3.7 EXCAVATION AND BACKFILLING
A. Provide all excavation, trenching, tunneling, dewatering and backfilling required for the electrical work. Coordinate the work with other excavating and backfilling in the same area.
B. Where conduit is installed less than 2'6" below the surface of pavement, provide concrete encasement, 4" minimum coverage, all around or as shown on the electrical Drawings.
C. Backfill all excavations with well-tamped granular material. Backfill all excavations under wall footings with lean mix concrete up to underside of footings and extend concrete within excavation a minimum of four (4) feet each side of footing. Granular backfill shall be placed in layers not more than 8 inches in thickness, 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.
D. Backfill all excavations inside building, under drives and parking areas with well-tamped granular material. Granular backfill shall be placed in layers not more than 8 inches in thickness, 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.
E. Backfill outside building with granular material to a height 12 inches over top of pipe compacted to 95 percent compaction as specified above. Backfill remainder of excavation with unfrozen, excavated material in such a way to prevent settling.

3.8 EQUIPMENT CONNECTIONS
A. Make connections to equipment, motors, lighting fixtures, and other items included in the work in accordance with the approved shop Drawings and rough-in measurements furnished by the manufacturers of the particular equipment furnished. All additional connections not shown on the Drawings, but called out by the equipment manufacturer's shop Drawings shall be provided.

3.9 CLEANING
A. All debris shall be removed daily as required to maintain the work area in a neat, orderly condition.
B. Final cleanup shall include, but not be limited to, washing of fixture lenses or louvers, switchboards, substations, motor control centers, panels, etc. Fixture reflectors and lenses or louvers shall be left with no water marks or cleaning streaks.
3.10 PROTECTION AND HANDLING OF EQUIPMENT AND MATERIALS

A. Equipment and materials shall be protected from theft, injury or damage.

B. Protect conduit openings with temporary plugs or caps.

C. Provide adequate storage for all equipment and materials delivered to the job site. Location of the space will be designated by the Owner's representative or Architect/Engineer. Equipment set in place in unprotected areas must be provided with temporary protection.

3.11 EXTRA WORK

A. For any extra electrical work which may be proposed, this Contractor shall furnish to the General Contractor, an itemized breakdown of the estimated cost of the materials and labor required to complete this work. The Contractor shall proceed only after receiving a written order from the General Contractor establishing the agreed price and describing the work to be done. Prior to any extra work which may be proposed, the Electrical Contractor shall submit unit prices (same prices for increase/decrease of work) for the following items: 1/2", 3/4", 1", 1-1/2" conduit; #12, #10, #8, #6, #2 wire; fire alarm combination audible notification appliance, fire visual notification appliance, or other devices which may be required for any proposed extra work.

3.12 DRAWINGS AND MEASUREMENTS

A. The Drawings are not intended to be scaled for rough-in measurements nor to serve as Shop Drawings. Field measurements necessary for ordering materials and fitting the installation to the building construction and arrangement are the Contractor's responsibility. The Contractor shall check latest Architectural Drawings and locate light switches from same where door swings are different from Electrical Drawings.

END OF SECTION 26 0010
SECTION 26 0519 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes:
 1. Building wires and cables rated 600V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

B. Related Sections include the following:
 1. Division 26 Section "Control/Signal Transmission Media" for transmission media used for control and signal circuits.
 2. Division 26 Section "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000 V.
 3. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.3 SUBMITTALS
A. Field Quality-Control Test Reports
1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

1. Testing Agency’s Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.

B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for types THHN/THWN-2, XHHW-2.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

C. Each feeder shall be of the same conductor and insulation material (phase, neutral, and parallel).

D. Use conductor not smaller than 12 AWG for power and lighting circuits. Unless indicated otherwise, all circuits shall be 2#12, 1#12G, ¾"C.

E. Use conductor not smaller than 14 AWG for control circuits, provided by Electrical Contractor.

F. Where equipment is listed for use with copper conductors only, splice from aluminum to copper prior to entering equipment or use copper conductors for the entire length of feeder.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspace: Type THHN/THWN-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

G. Neatly train and lace wiring inside boxes, equipment, and panelboards.

H. Type MC cable shall not be used.

I. AC/MC cable shall not be used.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than un-spliced conductors.

1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
2. Use compression type terminations for aluminum conductors.

C. Clean conductor surfaces before installing lugs and connectors.

D. Make splices, taps, and terminations to carry full ampacity of conductors with no perceptible temperature rise.
E. Use solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and larger.

F. Use Sta-Kon connectors to terminate stranded conductors #10 AWG and smaller to screw terminals.

G. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260533 "Raceways and Boxes."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing"

1. Description: Test all feeders rated 100 A and above.

2. Visual and Mechanical Inspection
 a. Inspect cables for physical damage and proper connection in accordance with the one line diagram.
 b. Test cable mechanical connections with an infrared survey.
 c. Check cable color-coding against project Specifications and N.E.C. requirements.

3. Electrical Tests
 a. Perform insulation resistance test on each conductor with respect to ground and adjacent conductors. Applied potential to be 1000 volts dc for 1 minute.
 b. Perform continuity test to insure proper cable connection.

4. Test Values
 a. Minimum insulation resistance values shall be not less than fifty mega-ohms.

B. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 26 0519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

B. Related Sections include the following:

1. Division 26 Section "Electrical General Requirements".
2. Division 26 Section "Conductors and Cables".

1.3 REFERENCES

A. ASTM B 3: Specification for Soft or Annealed Copper Wire.

B. ASTM B 8: Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard or Soft.

C. ASTM B 33: Specification for Tinned Soft or Annealed Copper Wire for Electrical Purposes.

L. NFPA 70B: Recommended Practice for Electrical Equipment Maintenance.

M. TIA/EIA 607: Commercial Building Grounding and Bonding Requirements Standard.

N. UL 467: Grounding and Bonding Equipment.

O. UL 486 A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.

P. UL 486B: Wire Connectors for Use with Aluminum Conductors.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Product Data: For the following:

 1. Ground rods.

C. Qualification Data: For firms and persons specified in "Quality Assurance" Article.

D. Field Test Reports: Submit written test reports to include the following:

 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
 4. Indicate overall system resistance to ground.
 5. Indicate overall Telecommunications system resistance to ground.

1.5 PROJECT RECORD DOCUMENTS

A. Submit under provisions of Division 26 “Electrical General Requirements”.

B. Accurately record actual locations of grounding electrodes and connections to building steel.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Refer to specification section “Electrical Testing.”

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
1. Comply with UL 467.

C. Comply with NFPA 70; for overhead-line construction and medium-voltage underground construction, comply with IEEE C2.

D. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.

E. Comply with ANSI/TIA/EIA-607 “Standard for Commercial Building Grounding and Bonding Requirements for Telecommunications”.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Grounding Conductors and Cables:
 a. Refer to Division 26 Section “Conductors and Cables”.

2.2 GROUNDING CONDUCTORS

A. For insulated conductors, comply with Division 26 Section "Conductors and Cables."

B. Material: Copper.

C. Equipment Grounding Conductors: Insulated with green-colored insulation.

D. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use colored tape, alternating bands of green and yellow tape to provide a minimum of three bands of green and two bands of yellow.

E. Grounding Electrode Conductors: Stranded cable.

F. Underground Conductors: Bare, stranded, copper unless otherwise indicated.

G. Bare Copper Conductors: Comply with the following:

H. Copper Bonding Conductors: As follows:

 1. Bonding Conductor: Stranded copper conductor; size per the NEC.
 2. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; size per the NEC.
 3. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; size per the NEC.
2.3 CONNECTOR PRODUCTS

A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.

B. Bolted Connectors: Bolted-pressure-type connectors, or compression type.

C. Welded Connectors: Exothermic-welded type, in kit form, and selected for the specific application per manufacturer's written instructions.

D. Compression-Type Connectors: Pure, wrought copper, per ASTM B187.

2.4 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel.
 2. Length: 120 inches.

PART 3 - EXECUTION

3.1 EQUIPMENT GROUNDING

A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.

B. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.

C. Underground Grounding Conductors: No. 2/0 AWG minimum. Bury at least 24 inches below grade or bury 12 inches above duct bank when installed as part of the duct bank.

D. In raceways, use insulated equipment grounding conductors.

E. Install equipment grounding conductors in all feeders and circuits. Terminate each end on suitable lugs, bus or bushing.

F. Nonmetallic Raceways: Install an equipment grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.

G. Verify specific equipment grounding requirements with the manufacturer's recommendations.

3.2 CONNECTIONS

A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

B. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells. Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Equipment Grounding Conductor Terminations
 1. Use solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and larger.
 2. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.

D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.

E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.

F. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

G. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.3 INSTALLATION

A. Equipotential Ground: Interconnect grounding electrodes to form one, electrically continuous, equipotential grounding electrode system. Grounding electrodes to be interconnected include:

 1. Ground rods.

B. Ground Rods: Install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes.

 1. Verify that final backfill and compaction has been complete before driving ground rods.
 2. Drive ground rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.
 3. Interconnect ground rods with grounding electrode conductors. Use exothermic welds, except at test wells and as otherwise indicated. Make connections without exposing steel or damaging copper coating.

C. Metal Water Service Pipe: Provide insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes by grounding clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
D. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with grounding clamp connectors.

E. Bond each aboveground portion of gas piping system upstream from equipment shutoff valve.

F. Bond interior metal piping systems and metal air ducts to equipment grounding conductors of associated pumps, fans, blowers, electric heaters, and air cleaners. Use braided-type bonding straps.

G. Equipment Grounding: Provide a permanent and continuous bonding of conductor enclosures, equipment frames, power distribution equipment ground busses, cable trays, metallic raceways, and other non-current carrying metallic parts of the electrical system.

3.4 UNDERGROUND DISTRIBUTION SYSTEM GROUNDING

A. Pad-Mounted Transformers and Switches: Install two ground rods and counterpoise circling pad. Ground pad-mounted equipment and non-current-carrying metal items associated with transformers/substations by connecting them to underground cable and grounding electrodes. Use not less than a No. 2 AWG conductor for counterpoise and for taps to equipment ground pad. Bury counterpoise not less than 18 inches below grade and 6 inches from the foundation.

3.5 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality control tests in accordance with Division 26 section “Electrical Testing”

1. Inspect grounding and bonding system conductors and connections for tightness and proper installation and for compliance with the Drawings and Specifications.
2. After installing grounding system but before permanent electrical circuitry has been energized, test for compliance with requirements.
 a. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal.
 b. Measure ground resistance not less than two full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 c. Perform tests, by the fall-of-potential method according to IEEE 81. Instrumentation utilized shall be as defined in Section 12 of IEEE 81 and shall be specifically designed for ground impedance testing. Provide sufficient spacing so that curves flatten in the 62% area of the distance between the item under test and the current electrode.
 d. Equipment Grounds: Utilize two-point method of IEEE 81. Measure between equipment ground being tested and known low-impedance grounding electrode or system.
3. Provide drawings locating each ground rod and ground rod assembly and other grounding electrodes, identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
 a. Equipment Rated 500 kVA and Less: 10 ohms.
 b. Equipment Rated 500 to 1000 kVA: 5 ohms.
 c. Equipment Rated More Than 1000 kVA: 3 ohms.
 e. Manhole Grounds: 10 ohms.
 f. The telecommunications grounding system shall have a maximum resistance of 1 ohm as measured from the TMGB ground to earth ground.
4. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

3.6 GRADING AND PLANTING

A. Restore surface features, including vegetation, at areas disturbed by Work of this Section. Reestablish original grades, unless otherwise indicated. If sod has been removed, replace it as soon as possible after backfilling is completed. Restore areas disturbed by trenching, storing of dirt, cable laying, and other activities to their original condition. Include application of topsoil, fertilizer, lime, seed, sod, sprig, and mulch. Comply with Division 2 Section "Landscaping." Maintain restored surfaces. Restore disturbed paving as indicated.

END OF SECTION 26 0526
SECTION 26 0529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.
B. Related Sections include the following:
 1. Division 26 Section "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS
A. Product Data: For the following:
 1. Steel slotted support systems.

1.6 QUALITY ASSURANCE
A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Comply with NFPA 70.

1.7 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS
A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 4. Channel Dimensions: Selected for applicable load criteria.
B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
C. **Conduit and Cable Support Devices**: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. **Support for Conductors in Vertical Conduit**: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. **Structural Steel for Fabricated Supports and Restraints**: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. **Mounting, Anchoring, and Attachment Components**: Items for fastening electrical items or their supports to building surfaces include the following:

1. **Powder-Actuated Fasteners**: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. **Mechanical-Expansion Anchors**: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. **Concrete Inserts**: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. **Clamps for Attachment to Steel Structural Elements**: MSS SP-58, type suitable for attached structural element.

5. **Through Bolts**: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. **Toggle Bolts**: All-steel springhead type.

7. **Hanger Rods**: Threaded steel.

2.2 **FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES**

A. **Description**: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. **Materials**: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with:
 a. Two-bolt conduit clamps
 b. Single-bolt conduit clamps
 c. Single-bolt conduit clamps using spring friction action for retention in support channel.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel:
 a. Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
 b. Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69
 c. Spring-tension clamps.

7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel support systems attached to substrate.

E. Slotted support systems applications:
1. Indoor dry and damp locations: Painted Steel
2. Outdoors and interior wet locations: Galvanized Steel

F. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

G. Do not fasten supports to pipes, ducts, mechanical equipment, and conduit.

H. Obtain permission from Architect/Engineer before using powder-actuated anchors.

I. Obtain permission from Architect/Engineer before drilling or cutting structural members.

J. Fabricate supports from structural steel or steel channel. Rigidly weld members or use hexagon head bolts to present neat appearance with adequate strength and rigidity. Use spring lock washers under all nuts.

K. Install surface-mounted cabinets and panelboards with minimum of four anchors.

L. In wet and damp locations use steel channel supports to stand cabinets and panelboards one inch off wall.

M. Use sheet metal channel to bridge studs above and below cabinets and panelboards recessed in hollow partitions.

N. The Contractor shall replace all supports and channels that sag, twist, and/or show signs of not providing proper structural support, to the equipment, it is intended for, as determined by the Owner and Architect/Engineer. All costs associated with replacing supports and steel channels shall be incurred by the Contractor.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Provide concrete bases for all floor mounted electrical equipment.

B. Provide concrete bases for all exterior, grade level electrical equipment, and where indicated.

C. Base/Pad Construction:
 1. Construct per manufacturer’s recommendations for particular equipment, including suggested piers and dowel rods.
 2. Interior concrete bases shall have a minimum depth of 4” unless other indicated or recommended by the manufacturer.
 3. Exterior concrete bases shall have a minimum depth of 8” unless other indicated or recommended by the manufacturer.
 4. Construct concrete bases for primary and secondary power distribution equipment per requirements of the electrical utility, where submitted for its review.

D. Anchor equipment to base per both supports and equipment manufacturer’s instructions.
E. Coordinate conduit openings and sleeve locations in base with requirements of equipment to be supported.

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of the base.

2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 0529
SECTION 26 0533 - RACEWAYS AND BOXES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

B. Related Sections include the following:
 1. Division 26 Section, "Underground Ducts and Raceways for Electrical Systems" for exterior duct banks, manholes and underground utility construction.
 2. Division 07 Section, "Penetration Firestopping" for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
 3. Division 26 Section "Wiring Devices" for devices installed in boxes and for floor-box service fittings, and for access floor boxes and service poles.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. ENT: Electrical nonmetallic tubing.
C. FMC: Flexible metal conduit.
D. IMC: Intermediate metal conduit.
E. LFMC: Liquidtight flexible metal conduit.
F. LFNC: Liquidtight flexible nonmetallic conduit.
G. RNC: Rigid nonmetallic conduit.
H. PVC: Polyvinyl Chloride.
I. HDPE: High Density Polyethylene.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

C. All work in natatoriums, pool areas and fountain structures shall be in accordance with N.E.C. article 680, “Swimming Pools, Fountains, and Similar Installations.”

1.6 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Allied Tube Triangle Century.
4. Anamet Electrical, Inc.; Anaconda Metal Hose.
5. International Metal Hose.
6. Electri-Flex Co.
7. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
8. LTV Steel Tubular Products Company – Manhattan/CDT/Cole-Flex.
11. Wheatland.

B. Rigid Steel Conduit: ANSI C80.1.

C. Aluminum Rigid Conduit: ANSI C80.5.

D. IMC: ANSI C80.6.

E. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

F. EMT: ANSI C80.3.

G. FMC: Zinc-coated steel.

H. LFMC: Flexible steel conduit with PVC jacket.

I. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: Steel, set-screw type.
 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 3. Arnco Corp.
 4. Cantex Inc.
 7. ElecSys, Inc.
 8. Electri-Flex Co.
 9. Integral.
 10. Kor-Kap.
 12. Manhattan/CDT/Cole-Flex.
 13. RACO; Division of Hubbell, Inc.
 15. Spiralduct, Inc./AFC Cable Systems, Inc.

B. ENT: NEMA TC 13.

C. RNC: NEMA TC 2, Schedule 40 and Schedule 80 PVC.

D. ENT and RNC Fittings: NEMA TC 3; match to conduit or tubing type and material.

E. LFNC: UL 1660.

2.3 METAL WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hoffman.
 2. Square D.

B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

E. Wireway Covers: Hinged type as indicated.

F. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Sheet Metal Outlet and Device Boxes: NEMA OS 1. Shall be used within walls or ceiling.

B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover. Shall be used in all exposed, non-recessed, locations.

C. Nonmetallic Outlet and Device Boxes: NEMA OS 2. Shall be used in corrosive areas.

D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

E. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover. Shall be used in areas exposed to water.

F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

2.5 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch thickness as indicated and of length to suit application.

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems."
2.6 SLEEVE SEALS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Carbon steel. Include two for each sealing element.
3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.8 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Provide raceways in interior and exterior locations in accordance with the “Raceway Application Matrix” included on the drawings.

B. Boxes and Enclosures, Exterior Aboveground: NEMA 250, Type 3R.

C. Boxes, Enclosures, and Handholes:

1. Handholes and Pull Boxes in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Non-deliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 structural load rating.
2. Handholes and Pull Boxes in Sidewalk and Similar Applications with a Safety Factor for Non-deliberate Loading by Vehicles: Polymer-concrete units, SCTE 77, Tier 8 structural load rating.
D. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.

E. Minimum Raceway Size: 3/4-inch trade size.

F. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
 3. EMT: Use setscrew fittings. Comply with NEMA FB 2.10.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

G. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

H. Do not install aluminum conduits in contact with concrete.

I. Install surface raceways only where indicated on Drawings.

J. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Install temporary closures to prevent foreign matter from entering raceways.

F. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.

G. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

I. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.

J. Support conduit within 12 inches of enclosures to which attached.

K. Raceways Embedded in Slabs:
1. Raceways embedded in slabs shall be limited to above grade concrete decks. Embedded conduit shall be limited to servicing floor boxes and equipment located in open spaces away from accessible walls.

2. Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover.

3. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.

4. Space raceways laterally to prevent voids in concrete.

5. Run conduit larger than 1-inch trade size (DN 27) parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.

6. Arrange raceways to cross building expansion joints at right angles with expansion fittings.

7. Conduits shall run flat. Do not allow conduits to cross.

8. Change from non-metallic raceway to EMT before turning up out of the concrete and rising above the floor.

L. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.

1. Run parallel or banked raceways together on common supports.

2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

R. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

S. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.

T. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

U. Provide pull string and 25% spare capacity in every branch circuit conduit.

V. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where conduits route through, to, or from a hazardous classified space (Class I or II), provide proper seal offs when exiting or entering the hazardous classified space.
3. Where conduits pass between spaces that are maintained at two different vapor pressures.
4. Where otherwise required by NFPA 70.

W. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.

X. Expansion-Joint Fittings:
1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer’s written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

Y. Flexible Conduit Connections: Comply with NEMA RV3. Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.

Z. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals. Provide cover clips to cover space between connecting pieces.

AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

BB. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

CC. Locate boxes so that cover or plate will not span different building finishes.

DD. Support boxes of three gangs or more from one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

EE. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

FF. Install hinged-cover enclosures and cabinets plumb. Support at each corner.

GG. Do not route feeders across roof.
HH. Provide a pull box (a handhole for outdoor applications) for each conduit run that exceeds 250 feet. Provide two pull boxes (handholes for outdoor applications) for runs that exceed 500 feet.

II. Route conduits in finished areas with exposed ceilings at underside of structural deck or as high as possible.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 2 Section "Earthwork" for pipe less than 6 inches in nominal diameter.
2. Install backfill as specified in Division 2 Section "Earthwork."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 2 Section "Earthwork."
4. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
5. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits, placing them 24 inches o.c. Align planks along the width and along the centerline of conduit.

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
D. Install handholes and boxes with bottom below the frost line, 42" below grade.
E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.
F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
3.5 SLEEVE INSTALLATION FOR ELECTRICAL AND COMMUNICATIONS PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Through-Penetration Firestop Systems."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve cross-section rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 7 Section "Through-Penetration Firestop Systems."

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.6 SLEEVE-SEAL INSTALLATION

A. Install to seal underground, exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Through-Penetration Firestop Systems."

3.8 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.9 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 26 0533
SECTION 26 0543 - UNDERGROUND DUCTS AND UTILITY STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section, including:

1.2 SUMMARY

A. This Section includes the following:

1. Conduit, ducts, and duct accessories for concrete-encased duct banks.
2. Handholes and boxes.

B. Related Sections:

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

1.5 QUALITY ASSURANCE

1.6 DELIVERY, STORAGE, AND HANDLING

1.7 PROJECT CONDITIONS

1.8 COORDINATION

PART 2 - PRODUCTS

2.1 CONDUIT

2.2 NONMETALLIC DUCTS AND DUCT ACCESSORIES

2.3 HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

2.4 PRECAST MANHOLES

2.5 UTILITY STRUCTURE ACCESSORIES

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

3.2 EARTHWORK

3.3 DUCT INSTALLATION

3.4 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

3.5 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

3.6 GROUNDING

3.7 FIELD QUALITY CONTROL

3.8 CLEANING
1.4 SUBMITTALS

A. Product Data: For the following:
 1. Duct-bank materials, including separators and miscellaneous components.
 2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 3. Accessories for manholes, handholes and boxes.
 4. Warning tape.

B. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 2. Drawings shall be signed and sealed by a qualified professional engineer.

C. Qualification Data: For professional engineer and testing agency.

D. Source quality-control test reports.

E. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

B. Comply with ANSI C2.

C. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 1. Notify Construction Manager no fewer than seven days in advance of proposed interruption of electrical service.
 2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

1.8 COORDINATION

A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.

B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities,
underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUIT

B. RNC: NEMA TC 2, HDPE Schedule 40, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 NONMETALLIC DUCTS AND DUCT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Manufacturers:

1. ARNCO Corp.
2. Beck Manufacturing.
3. Cantex, Inc.
6. ElecSys, Inc.
7. Electri-Flex Company.
8. IPEX Inc.
9. Lamson & Sessions; Carlon Electrical Products.
10. Manhattan/CDT; a division of Cable Design Technologies.

C. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type EB-20-PVC, ASTM F 512, UL 651A, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.

D. Duct Accessories:

1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and selected to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.
2. Warning Tape: Underground-line warning tape specified in Division 26 Section "Electrical Identification."

2.3 HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Description: Comply with SCTE 77.

2. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
5. Cover Legend: Molded lettering, "ELECTRIC."
6. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

8. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

B. Polymer Concrete Handholes and Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. CDR Systems Corporation.

C. High-Density Plastic Boxes: Injection molded of high-density polyethylene or copolymer-polypropylene. Cover shall be polymer concrete.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 a. Carson Industries LLC.
 b. Nordic Fiberglass, Inc.
 c. PenCell Plastics.

2.4 PRECAST MANHOLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Concrete Products.
2. Carder Concrete Products.
3. Christy Concrete Products.
4. Elmhurst-Chicago Stone Co.
5. Oldcastle Precast Group.
6. Riverton Concrete Products; a division of Cretex Companies, Inc.
7. Utility Concrete Products, LLC.
8. Utility Vault Co.
9. Wausau Tile, Inc.

B. Comply with ASTM C 858 and with interlocking mating sections, complete with accessories, hardware, and features.

1. Windows: Precast openings in walls, arranged to match dimensions and elevations of approaching ducts and duct banks plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 a. Windows shall be located no less than 6 inches from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
 b. Window opening shall have cast-in-place, welded wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
 c. Window openings shall be framed with at least two additional No. 4 steel reinforcing bars in concrete around each opening.
2. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 a. Type and size shall match fittings to duct or conduit to be terminated.
 b. Fittings shall align with elevations of approaching ducts and be located near interior corners of manholes to facilitate racking of cable.

C. Concrete Knockout Panels: 1-1/2 to 2 inches thick, for future conduit entrance and sleeve for ground rod.

D. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.5 UTILITY STRUCTURE ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Bilco Company (The).
 2. Campbell Foundry Company.
 3. Carder Concrete Products.
 4. Christy Concrete Products.
 5. East Jordan Iron Works, Inc.
 7. McKinley Iron Works, Inc.
 13. Riverton Concrete Products; a division of Cretex Companies, Inc.
 14. Strongwell Corporation; Lenoir City Division.
 15. Underground Devices, Inc.
 16. Utility Concrete Products, LLC.
 17. Utility Vault Co.
 18. Wausau Tile, Inc.

B. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.
 1. Frame and Cover: Weatherproof, gray cast iron complying with ASTM A 48/A 48M, Class 30B with milled cover-to-frame bearing surfaces; diameter, 26 inches.
 a. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 b. Special Covers: Recess in face of cover designed to accept finish material in paved areas.

 2. Cover Legend: Cast in. Selected to suit system.
 a. Legend: "ELECTRIC-LV" for duct systems with power wires and cables for systems operating at 600 V and less.
 b. Legend: "ELECTRIC-HV" for duct systems with medium-voltage cables.
 c. Legend: "SIGNAL" for communications, data, and telephone duct systems.

 3. Manhole Chimney Components: Precast concrete rings with dimensions matched to those of roof opening.
a. Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C 270, Type M, except for quantities less than 2.0 cu. ft. where packaged mix complying with ASTM C 387, Type M, may be used.

C. Manhole Sump Frame and Grate: ASTM A 48/A 48M, Class 30B, gray cast iron.

D. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch- diameter eye, and 1-by-4-inch bolt.

1. Working Load Embedded in 6-Inch, 4000-psi Concrete: 13,000-lbf minimum tension.

E. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch- diameter eye, rated 2500-lbf minimum tension.

F. Pulling-In and Lifting Irons in Concrete Floors: 7/8-inch- diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.

1. Ultimate Yield Strength: 40,000-lbf shear and 60,000-lbf tension.

G. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch ID by 2-3/4 inches deep, flared to 1-1/4 inches minimum at base.

1. Tested Ultimate Pullout Strength: 12,000 lbf minimum.

H. Expansion Anchors for Installation after Concrete Is Cast: Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip with 1/2-inch bolt, 5300-lbf rated pullout strength, and minimum 6800-lbf rated shear strength.

I. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.

1. Stanchions: Nominal 36 inches high by 4 inches wide, with minimum of 9 holes for arm attachment.
2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches with 450-lb minimum capacity to 20 inches with 250-lb minimum capacity. Top of arm shall be nominally 4 inches wide, and arm shall have slots along full length for cable ties.

J. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F. Capable of withstanding temperature of 300 deg F without slump and adhering to clean surfaces of plastic ducts, metallic conduits, conduit coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.

K. Fixed Manhole Ladders: Arranged for attachment to wall of manhole. Ladder and mounting brackets and braces shall be fabricated from nonconductive, structural-grade, fiberglass-reinforced resin.

L. Cover Hooks: Heavy duty, designed for lifts 60 lbf and greater. Two required.

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Cables Over 600 V: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.
B. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

3.2 EARTHWORK

A. Excavation and Backfill: Comply with Division 2 Section "Earthwork," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Division 2 Sections "Lawns and Grasses" and "Exterior Plants."

D. Cut and patch existing pavement in the path of underground ducts and utility structures according to Division 1 Section "Cutting and Patching."

3.3 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.

B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations, unless otherwise indicated.

C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

D. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.
2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole.
3. Grout end bells into structure walls from both sides to provide watertight entrances.

E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Division 26 Section "Basic Electrical Materials and Methods."

F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

G. Pulling Cord: Install 100-lbf- test nylon cord in ducts, including spares.

H. Concrete-Encased Ducts: Support ducts on duct separators.

1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire...
assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

2. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing rod dowels extending 18 inches into concrete on both sides of joint near corners of envelope.

3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

5. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

6. Minimum Space between Ducts: 3 inches between ducts and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and signal ducts.

7. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles, unless otherwise indicated.

8. Stub-Ups: Use manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Extend concrete encasement throughout the length of the elbow.

9. Stub-Ups: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. Stub-Ups to Equipment: For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

10. Warning Tape: Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of the centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

11. Conduit sweeps use rigid conduit.

3.4 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Precast Concrete Handhole and Manhole Installation:
 1. Comply with ASTM C 891, unless otherwise indicated.
 2. Install units level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances.
 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:
1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
3. Install handholes with bottom below the frost line, below grade.
4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
5. Where indicated, cast handhole cover frame integrally with handhole structure.

C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

D. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 2. Install chimney, constructed of precast concrete collars and rings to support frame and cover and to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for cast-iron frame to chimney.

E. Waterproofing: Apply waterproofing to exterior surfaces of manholes after concrete has cured at least three days. Waterproofing materials and installation are specified in Division 7 Section "Elastomeric Sheet Waterproofing." After ducts have been connected and grouted, and before backfilling, waterproof joints and connections and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

F. Dampproofing: Apply dampproofing to exterior surfaces of manholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Division 7 Section "Bituminous Dampproofing." After ducts have been connected and grouted, and before backfilling, dampproof joints and connections and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.

G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

H. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

I. Warning Sign: Install "Confined Space Hazard" warning sign on the inside surface of each manhole cover.

3.5 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of ducts, and seal joint between box and extension as recommended by the manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set so cover surface will be flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Install handholes and boxes with bottom below the frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.
F. Field-cut openings for ducts and conduits according to enclosure manufacturer’s written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.6 GROUNDING

A. Ground underground ducts and utility structures according to Division 26 Section “Grounding and Bonding.”

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:
 1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
 2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.
 3. Test manhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Division 26 Section “Grounding and Bonding.”

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.8 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 26 0543
SECTION 26 0553 - ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. Identification for raceway and metal-clad cable.
 2. Identification for conductors and communication and control cable.
 4. Equipment identification labels.

1.3 QUALITY ASSURANCE
B. Comply with NFPA 70.

1.4 COORDINATION
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS
2.2 CONDUCTOR, COMMUNICATION AND CONTROL CABLE IDENTIFICATION MATERIALS
2.3 UNDERGROUND-LINE WARNING TAPE
2.4 EQUIPMENT IDENTIFICATION LABELS
2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

PART 3 - EXECUTION

3.1 APPLICATION
3.2 INSTALLATION
C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Color for Printed Legend:
 1. Power Circuits: Black letters on an orange field.
 2. Legend: Indicate system or service and voltage, if applicable.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 CONDUCTOR, COMMUNICATION AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 UNDERGROUND-LINE WARNING TAPE

A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 1. Not less than 6 inches wide by 4 mils thick.
 2. Compounded for permanent direct-burial service.
 3. Embedded continuous metallic strip or core.
 4. Printed legend shall indicate type of underground line.

2.4 EQUIPMENT IDENTIFICATION LABELS

B. Outdoor Equipment Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 2. Tensile Strength: 50 lb, minimum.
 3. Temperature Range: Minus 40 to plus 185 deg F.
ELECTRICAL IDENTIFICATION

B. Paint: Paint materials and application requirements are specified in Division 9 painting Sections.

C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 APPLICATION

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service and Feeders More Than 400 A: Identify with orange self-adhesive vinyl label.

B. Power-Circuit Conductor Identification: For conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape and marker tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.

C. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use marker tape. Identify each ungrounded conductor according to source and circuit number as indicated on Drawings. Identify control circuits by control wire number as indicated on shop drawings.

D. Branch-Circuit Conductor Identification: Mark junction box covers in indelible ink with the panel and breaker numbers of other circuits contained within.

E. Conductor Identification: Locate at each conductor at panelboard gutters, pull boxes, outlet and junction boxes, and each load connection or termination point.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. Install underground-line warning tape for both direct-buried cables and cables in raceway.

G. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Outdoor Equipment: Stenciled.

2. Equipment to Be Labeled: If included on project. All items may not be on project.
 a. Panelboards, electrical cabinets, and enclosures.
 b. Disconnect switches.

3.2 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location:
1. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
2. Conduit Markers: Provide identification for each power conduit containing conductors rated 400A or greater.

C. Apply identification devices to surfaces after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.

F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

G. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.

1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.
2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

H. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

I. Label information arrangement for 3 lines of text.
1. Line one shall describe the panel or equipment. Line one example: “DP-XX,” “RP-XX,” “T-XX,” “EF-XX,” etc.
2. Line two shall describe the first disconnecting means feeding this panel or equipment. Line two example: “Fed from DP-XX,” “Fed from RP-XX,” etc.
3. Line three indicates that location of the disconnecting means as identified in line two. Line three example: “First Floor Elect. Rm #XXX.”
4. Line four shall include “Via T-XX” when panel or equipment is fed from a transformer.
J. Examples:

<table>
<thead>
<tr>
<th>RP-1A</th>
<th>EF-1</th>
<th>LP-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FED FROM DP-1A</td>
<td>FED FROM MCC-1A</td>
<td>LOCATED IN</td>
</tr>
<tr>
<td>ELECTRICAL ROOM A100</td>
<td>MECHANICAL ROOM F101</td>
<td>ELECTRICAL ROOM A100</td>
</tr>
<tr>
<td>VIA T-1A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K. Fusible Enclosed Switches and Distribution Equipment: Install self-adhesive vinyl label indicating fuse rating and type on the outside of door on each fused switch.

L. Painted Identification: Prepare surface and apply paint according to Division 9 painting Sections.

M. Degrease and clean surface to receive nameplates.

N. Install nameplate and labels parallel to equipment lines.

O. Secure nameplate to equipment front using screws.

P. Secure nameplate to inside surface of door on panelboard that is recessed in finished locations.

Q. Identify conduit using field painting where required.

END OF SECTION 26 0553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SCOPE

A. The contractor shall furnish short-circuit and protective device coordination studies as prepared by the electrical equipment manufacturer.

B. The contractor shall furnish an Arc Flash Hazard Analysis Study per the requirements set forth in NFPA 70E -Standard for Electrical Safety in the Workplace. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D prepared by the electrical equipment manufacturer.

C. The scope of the studies shall include all new distribution equipment supplied by the equipment manufacturer under this contract as well as all directly affected existing distribution equipment at the customer facility.

1.3 REFERENCES

A. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

1. IEEE 141 – Recommended Practice for Electric Power Distribution and Coordination of Industrial and Commercial Power Systems
2. IEEE 242 – Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
3. IEEE 399 – Recommended Practice for Industrial and Commercial Power System Analysis
6. IEEE 1584 -Guide for Performing Arc-Flash Hazard Calculations

B. American National Standards Institute (ANSI):

1. ANSI C57.12.00 – Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers
2. ANSI C37.13 – Standard for Low Voltage AC Power Circuit Breakers Used in Enclosures
3. ANSI C37.010 – Standard Application Guide for AC High Voltage Circuit Breakers Rated on a Symmetrical Current Basis

C. The National Fire Protection Association (NFPA)

1. NFPA 70 -National Electrical Code, latest edition
2. NFPA 70E – Standard for Electrical Safety in the Workplace

1.4 SUBMITTALS FOR REVIEW/APPROVAL

A. The short-circuit and protective device coordination studies shall be submitted to the design engineer prior to receiving final approval of the distribution equipment shop drawings and/or prior to release of equipment drawings for manufacturing. If formal completion of the studies may cause delay in equipment manufacturing, approval from the engineer may be obtained for preliminary submittal of sufficient study data to ensure that the selection of device and characteristics will be satisfactory.

1.5 SUBMITTALS FOR CONSTRUCTION

A. The results of the short-circuit, protective device coordination and arc flash hazard analysis studies shall be summarized in a final report. Five (5) bound copies of the complete final report shall be submitted. Additional copies of the short-circuit input and output data, where required, shall be provided on CD in PDF format.

B. The report shall include the following sections:

1. Executive Summary.
2. Descriptions, purpose, basis and scope of the study.
3. Tabulations of circuit breaker, fuse and other protective device ratings versus calculated short circuit duties.
4. Protective device time versus current coordination curves, tabulations of relay and circuit breaker trip unit settings, fuse selection.
5. Fault current calculations including a definition of terms and guide for interpretation of the computer printout.
6. Details of the incident energy and flash protection boundary calculations.
7. Recommendations for system improvements, where needed.
8. One-line diagram.

C. Arc flash labels shall be provided in hard copy and a copy of the computer analysis software viewer program is required to provide arc flash labels in electronic format.
1.6 QUALIFICATIONS

A. The short-circuit, protective device coordination and arc flash hazard analysis studies shall be conducted under the supervision and approval of a Registered Professional Electrical Engineer skilled in performing and interpreting the power system studies.

B. The Registered Professional Electrical Engineer shall be a full-time employee of the equipment manufacturer.

C. The Registered Professional Electrical Engineer shall have a minimum of five (5) years of experience in performing power system studies.

D. The equipment manufacturer shall demonstrate experience with Arc Flash Hazard Analysis by submitting names of at least ten actual arc flash hazard analysis it has performed in the past year.

1.7 COMPUTER SOFTWARE PROGRAMS

A. Computer Software Programs: Subject to compliance with requirements, provide products by one of the following:

1. EDSA Micro Corporation.
2. SKM Systems Analysis, Inc.
3. ESA Inc.
4. CGI CYME.
5. Operation Technology, Inc.

PART 2 - PRODUCTS

2.1 STUDIES

A. Contractor to furnish short-circuit and protective device coordination studies as prepared by equipment manufacturer.

B. The contractor shall furnish an Arc Flash Hazard Analysis Study per NFPA 70E -Standard for Electrical Safety in the Workplace, reference Article 130.3 and Annex D prepared by the equipment manufacturer.

2.2 DATA COLLECTION

A. Contractor shall furnish all data as required by the power system studies. The Engineer performing the short-circuit, protective device coordination and arc flash hazard analysis studies shall furnish the Contractor with a listing of required data immediately after award of the contract. The Contractor shall expedite collection of the data to assure completion of the studies as required for final approval of the distribution equipment shop drawings and/or prior to the release of the equipment for manufacturing.

B. Source combination may include present and future motors and generators.

C. Load data utilized may include existing and proposed loads obtained from Contract Documents provided by Owner.

D. If applicable, include fault contribution of existing motors in the study. The Contractor shall obtain required existing equipment data to satisfy the study requirements.
2.3 SHORT-CIRCUIT AND PROTECTIVE DEVICE EVALUATION STUDY

B. Transformer design impedances shall be used when test impedances are not available.

C. Provide the following:
 1. Calculation methods and assumptions
 2. Selected base per unit quantities
 3. One-line diagram of the system being evaluated
 4. Source impedance data, including electric utility system and motor fault contribution characteristics
 5. Tabulations of calculated quantities
 6. Results, conclusions, and recommendations.

D. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault at each:
 1. Electric utility’s supply termination point
 2. Incoming switchgear
 3. Unit substation primary and secondary terminals
 4. Low voltage switchgear
 5. Motor control centers
 6. Standby generators and automatic transfer switches
 7. Branch circuit panelboards
 8. Other significant locations throughout the system.

E. For grounded systems, provide a bolted line-to-ground fault current study for areas as defined for the three-phase bolted fault short-circuit study.

F. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short circuit ratings
 2. Adequacy of switchgear, motor control centers, and panelboard bus bars to withstand short-circuit stresses
 3. Notify design engineer in writing, of existing, circuit protective devices improperly rated for the calculated available fault current.

2.4 PROTECTIVE DEVICE COORDINATION STUDY

A. Proposed protective device coordination time-current curves (TCC) shall be displayed on log-log scale graphs.

B. Include on each TCC graph, a complete title and one-line diagram with legend identifying the specific portion of the system covered.

C. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.

D. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.

E. Plot the following characteristics on the TCC graphs, where applicable:
 1. Electric utility’s overcurrent protective device
 2. Medium voltage equipment overcurrent relays
3. Medium and low voltage fuses including manufacturer’s minimum melt, total clearing, tolerance, and damage bands
4. Low voltage equipment circuit breaker trip devices, including manufacturer’s tolerance bands
5. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves
6. Conductor damage curves
7. Ground fault protective devices, as applicable
8. Pertinent motor starting characteristics and motor damage points, where applicable
9. Pertinent generator short-circuit decrement curve and generator damage point
10. The largest feeder circuit breaker in each motor control center and applicable panelboard.

F. Provide adequate time margins between device characteristics such that selective operation is provided, while providing proper protection.

2.5 ARC FLASH HAZARD ANALYSIS

A. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D.

B. The flash protection boundary and the incident energy shall be calculated at all significant locations in the electrical distribution system (switchboards, switchgear, motor-control centers, panelboards, busway and splitters) where work could be performed on energized parts.

C. The Arc-Flash Hazard Analysis shall include all significant locations in 240 volt and 208 volt systems fed from transformers equal to or greater than 125 kVA where work could be performed on energized parts.

D. Safe working distances shall be based upon the calculated arc flash boundary considering an incident energy of 1.2 cal/cm².

E. When appropriate, the short circuit calculations and the clearing times of the phase overcurrent devices will be retrieved from the short-circuit and coordination study model. Ground overcurrent relays should not be taken into consideration when determining the clearing time when performing incident energy calculations.

F. The short-circuit calculations and the corresponding incident energy calculations for multiple system scenarios must be compared and the greatest incident energy must be uniquely reported for each equipment location. Calculations must be performed to represent the maximum and minimum contributions of fault current magnitude for all normal and emergency operating conditions. The minimum calculation will assume that the utility contribution is at a minimum and will assume a minimum motor contribution (all motors off). Conversely, the maximum calculation will assume a maximum contribution from the utility and will assume the maximum amount of motors to be operating. Calculations shall take into consideration the parallel operation of synchronous generators with the electric utility, where applicable.

G. The incident energy calculations must consider the accumulation of energy over time when performing arc flash calculations on buses with multiple sources. Iterative calculations must take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators should be decremented as follows:

1. Fault contribution from induction motors should not be considered beyond 3-5 cycles.
2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g. contributions from permanent magnet generators will typically decay from 10 per unit to 3 per unit after 10 cycles).

H. For each equipment location with a separately enclosed main device (where there is adequate separation between the line side terminals of the main protective device and the work location), calculations for incident energy and flash protection boundary shall include both the line and load side of the main breaker.

I. When performing incident energy calculations on the line side of a main breaker (as required per above), the line side and load side contributions must be included in the fault calculation.
J. Mis-coordination should be checked amongst all devices within the branch containing the immediate protective device upstream of the calculation location and the calculation should utilize the fastest device to compute the incident energy for the corresponding location.

K. Arc Flash calculations shall be based on actual overcurrent protective device clearing time. Maximum clearing time will be capped at 2 seconds based on IEEE 1584-2002 section B.1.2. Where it is not physically possible to move outside of the flash protection boundary in less than 2 seconds during an arc flash event, a maximum clearing time based on the specific location shall be utilized.

2.6 REPORT SECTIONS

A. Input data shall include, but not be limited to the following:

1. Feeder input data including feeder type (cable or bus), size, length, number per phase, conduit type (magnetic or non-magnetic) and conductor material (copper or aluminum).
2. Transformer input data, including winding connections, secondary neutral-ground connection, primary and secondary voltage ratings, kVA rating, impedance, % taps and phase shift.
3. Generation contribution data, (synchronous generators and Utility), including short-circuit reactance \(X'd \), rated MVA, rated voltage, three-phase and single line-ground contribution (for Utility sources) and \(X/R \) ratio.
4. Motor contribution data (induction motors and synchronous motors), including short-circuit reactance, rated horsepower or kVA, rated voltage, and \(X/R \) ratio.

B. Short-Circuit Output Data shall include, but not be limited to the following reports:

1. Low Voltage Fault Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 a. Voltage
 b. Calculated fault current magnitude and angle
 c. Fault point \(X/R \) ratio
 d. Equivalent impedance

2. Momentary Duty Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 a. Voltage
 b. Calculated symmetrical fault current magnitude and angle
 c. Fault point \(X/R \) ratio
 d. Calculated asymmetrical fault currents
 1) Based on fault point \(X/R \) ratio
 2) Based on calculated symmetrical value multiplied by 1.6
 3) Based on calculated symmetrical value multiplied by 2.7
 e. Equivalent impedance

3. Interrupting Duty Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 a. Voltage
 b. Calculated symmetrical fault current magnitude and angle
 c. Fault point \(X/R \) ratio
 d. No AC Decrement (NACD) Ratio
 e. Equivalent impedance
 f. Multiplying factors for 2, 3, 5 and 8 cycle circuit breakers rated on a symmetrical basis
 g. Multiplying factors for 2, 3, 5 and 8 cycle circuit breakers rated on a total basis
C. Recommended Protective Device Settings:
 1. Phase and Ground Relays:
 a. Current transformer ratio
 b. Current setting
 c. Time setting
 d. Instantaneous setting
 e. Recommendations on improved relaying systems, if applicable.
 2. Circuit Breakers:
 a. Adjustable pickups and time delays (long time, short time, ground)
 b. Adjustable time-current characteristic
 c. Adjustable instantaneous pickup
 d. Recommendations on improved trip systems, if applicable.

D. Incident energy and flash protection boundary calculations
 1. Arcing fault magnitude
 2. Protective device clearing time
 3. Duration of arc
 4. Arc flash boundary
 5. Working distance
 6. Incident energy
 7. Hazard Risk Category
 8. Recommendations for arc flash energy reduction

PART 3 - EXECUTION

3.1 FIELD ADJUSTMENT
 A. The contractor shall adjust relay and protective device settings according to the recommended settings
 table provided by the coordination study.
 B. Make minor modifications to equipment as required to accomplish conformance with short circuit and
 protective device coordination studies.
 C. Notify design engineer in writing of any required major equipment modifications.

3.2 ARC FLASH WARNING LABELS
 A. The contractor shall provide a 3.5 in. x 5 in. thermal transfer type label of high adhesion polyester for each
 work location analyzed.
 B. All labels will be based on recommended overcurrent device settings and will be provided after the results
 of the analysis have been presented to the owner and after any system changes, upgrades or
 modifications have been incorporated in the system.
 C. The label shall include the following information, at a minimum:
 1. Location designation
 2. Nominal voltage
 3. Flash protection boundary
 4. Hazard risk category
5. Incident energy
6. Working distance
7. Engineering report number, revision number and issue date.

D. Labels shall be machine printed, with no field markings.

E. Arc flash labels shall be provided in the following manner and all labels shall be based on recommended overcurrent device settings.
 1. For each 480 and applicable 208 volt panelboard, one arc flash label shall be provided.
 2. For each motor control center, one arc flash label shall be provided.
 3. For each low voltage switchboard, one arc flash label shall be provided.
 4. For each switchgear, one flash label shall be provided.
 5. For medium voltage switches one arc flash label shall be provided.

F. Labels shall be field installed by the contractor.

END OF SECTION 26 0573
SECTION 26 0999 - ELECTRICAL TESTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

B. Related Sections include the following:
1. Division 26 Section “Electrical General Requirements.”
2. Division 26 Section “Conductors and Cables.”
3. Division 26 Section “Grounding and Bonding.”
4. Division 26 Section “Enclosed Switches.”
5. Division 26 Section “Switchboards.”
6. Division 26 Section “Fuses.”

1.2 SECTION INCLUDES
A. The Electrical Contractor shall engage the services of a recognized corporately independent N.E.T.A. certified testing firm for the purpose of performing inspections and tests as herein specified.

B. The testing firm shall provide all material, equipment, labor, and technical supervision to perform such tests and inspections.

C. It is the intent of these tests to assure that all tested electrical equipment is operational and within industry and manufacturer's tolerances and is installed in accordance with design Specifications.

D. The test and inspections shall determine suitability for energization.

E. Equipment to be tested and inspected shall be the equipment shown on the one line diagram and schedules as required by part three of each individual Specification Section. In addition, all equipment that is part of an emergency distribution system shall be tested.

1.3 REFERENCES
A. All inspections and tests shall be in accordance with the latest version of the following codes and standards except as provided otherwise herein.
1. National Electrical Manufacturer's Association - NEMA
3. Institute of Electrical and Electronic Engineers - IEEE
7. State and Local Codes and Ordinances
8. Insulated Cable Engineers Association - ICEA
9. Association of Edison Illuminating Companies - AEIC
10. Occupational Safety and Health Administration
11. National Fire Protection Association - NFPA
 a. ANSI/NFPA 70: National Electrical Code
 b. ANSI/NFPA 70B: Electrical Equipment Maintenance
 c. NFPA 70E: Electrical Safety Requirements for Employee Workplaces

1.4 QUALIFICATIONS

A. The testing firm shall be a corporately independent testing organization, which can function as an unbiased testing authority, professionally independent of the manufacturers, suppliers, and installers of equipment or systems evaluated by the testing firm.

B. The testing firm shall be regularly engaged in the testing of electrical equipment devices, installations, and systems.

C. The lead, on site, technical person and at least 50% of the on site crew shall be currently certified by the InterNational Electrical Testing Association (NETA) or National Institute for Certification in Engineering Technologies in Electrical Power Distribution System Testing.

D. The testing firm shall only utilize technicians who are regularly employed by the firm on a full-time basis for testing services.

E. The Contractor shall submit proof of the above qualifications with bid proposal.

F. The terms used herewithin such as Test Agency, Test Contractor, Testing Laboratory, or Contractor Test Company, shall be construed to mean the testing organization.

G. Acceptable Testing Firms:

1. Northern Electrical Testing; Phone (248) 689-8980.
2. Utilities Instrumentation Services; Phone (734) 424-1200.
3. Emerson/High Voltage Maintenance Corporation; Phone (248) 305-5596.
4. Powertech Services, Inc.; Phone (810) 722-2280.
5. Magna Electric; Phone (248) 667-9492.

1.5 PERFORMANCE REQUIREMENTS

A. The Electrical Contractor shall supply a suitable and stable source of electrical power to each test site. The testing firm shall specify the power requirements.

B. The Electrical Contractor shall notify the testing firm when equipment becomes available for acceptance tests. Work shall be coordinated to expedite project scheduling.

C. The testing firm shall notify the Owner's Representative prior to commencement of any testing.
D. Any system, material or workmanship, which is found defective on the basis of acceptance tests, shall be reported to the Engineer. The Electrical Contractor shall correct all defects.

E. The testing organization shall maintain a written record of all tests and shall assemble and certify a final test report.

F. Safety and Precautions

1. Safety practices shall include, but are not limited to, the following requirements:
 a. Occupational Safety and Health Act.
 c. Applicable state and local safety operating procedures.
 d. NETA Safety/Accident Prevention Program.
 e. Owner’s safety practices.
 f. National Fire Protection Association - NFPA 70E.
 g. American National Standards for Personnel Protection.

2. All tests shall be performed with apparatus de-energized except where otherwise specifically required.
3. The testing organization shall have a designated safety representative on the project to supervise operations with respect to safety.

1.6 TEST INSTRUMENT CALIBRATION

A. Test Instrument Calibration

1. The testing firm shall have a calibration program, which assures that all applicable test instruments are maintained within rated accuracy.
2. The accuracy shall be directly traceable to the National Institute of Standards and Technology.
3. Instruments shall be calibrated in accordance with the following frequency schedule:
 a. Field instruments: Analog - 6 months maximum Digital - 12 months maximum
 b. Laboratory instruments: 12 months
 c. Leased specialty equipment: 12 months (Where accuracy is guaranteed by Lessor)

4. Dated calibration labels shall be visible on all test equipment.
5. Records must be kept up-to-date which show date and results of instruments calibrated or tested.
6. An up-to-date instrument calibration instruction and procedures shall be maintained for each test instrument.
7. Calibrating standard shall be of higher accuracy than that of the instrument tested.

B. Field Test Instrument Standards

1. All equipment used for testing and calibration procedures shall exhibit the following characteristics:
 a. Maintained in good visual and mechanical condition.
 b. Maintained in safe, operating condition.

C. Suitability of Test Equipment

1. All test equipment shall be in good mechanical and electrical condition.
2. Selection of metering equipment should be based on knowledge of the waveform of the variable being measured. Digital multi-meters may be average of RMS sensing and may include or exclude the dc component. When the variable contains harmonics of dc offset and, in general, any deviation
from a pure sine wave, average sensing, average measuring RMS scaled meters may be misleading. Use of RMS measuring meters is recommended.
3. Field test metering used to check power system meter calibration must have any accuracy higher than that of the instrument being checked.
4. Accuracy of metering in test equipment shall be appropriate for the test being performed.
5. Waveshape and frequency of test equipment output waveforms shall be appropriate for the test and tested equipment.

1.7 TEST REPORTS

A. A test report shall be generated for each piece of major equipment or groups of equipment and shall include the following:

1. A list of visual and mechanical inspections required by Division 26 Specification Sections in a checklist or similar format.
2. Test reports, including test values where applicable, for all required electrical tests. Clearly indicate where test values fall outside of the limits of recommended values.
3. Summary and interpretation of test results detailing problems located and recommended corrective measures.
4. Record of infrared scan and photos showing potential problem locations.
5. Signed and dated by the testing firm field superintendent stating that all required tests have been completed.

B. Test reports shall be furnished to the Architect/Engineer within 14 days of the completion each test on an ongoing basis. Original copies of the reports shall be furnished directly to the Architect/Engineer by the testing company prior to formal submittal via the Contractors.

PART 2 - PRODUCTS

Not Applicable

PART 3 - EXECUTION

3.1 THERMOGRAPHIC SURVEY

A. Visual and Mechanical Inspection

1. Remove all necessary covers prior to scanning.
2. Inspect for physical, electrical, and mechanical condition.

B. Equipment to be Scanned

1. All components of the distribution system down to and including branch circuit panelboards and motor control centers. Return 3 months after equipment has been energized and loaded to do a final scan of all equipment.

C. Provide report indicating the following:

1. Problem area (location of "hot spot").
2. Temperature rise between "hot spot" and normal or reference area.
3. Cause of heat rise.
4. Phase unbalance, if present.
5. Areas scanned.
D. Test Parameters

1. Scanning distribution system with ability to detect 1°C between subject area and reference at 30°C.
2. Equipment shall detect emitted radiation and convert detected radiation to visual signal.
3. Infrared surveys should be performed during periods of maximum possible loading but not less than twenty percent (20%) of rated load of the electrical equipment being inspected.

E. Test Results

1. Interpretation of temperature gradients requires an experienced technician. Some general guidelines are:
 a. Temperature gradients of 37°F to 44.6°F indicate possible deficiency and warrant investigation.
 b. Temperature gradients of 37°F to 59°F indicate deficiency; repair as time permits.
 c. Temperature gradients of 61°F and above indicate major deficiency; repair immediately.

END OF SECTION 26 0999
SECTION 26 2413 - SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes service and distribution switchboards rated 600 V and less.
B. Related Sections:

1.3 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. RFI: Radio-frequency interference.
D. RMS: Root mean square.

E. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions, utility or manufacturer's anchorage and base recommendations, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Related Submittals:

1. Provide overcurrent device coordination study to demonstrate proper overcurrent device ratings, adjustments, and settings.

C. Shop Drawings: For each switchboard and related equipment.

1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Enclosure types and details for types other than NEMA 250, Type 1.
 b. Bus configuration, current, and voltage ratings.
 c. Short-circuit current rating of switchboards and overcurrent protective devices.
 d. Descriptive documentation of optional barriers specified for electrical insulation and isolation if specified.
 e. Utility company's metering provisions with indication of approval by utility company if called out.
 f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

2. Wiring Diagrams: Power, signal, and control wiring.

D. Field quality-control test reports including the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1, include the following:

1. Routine maintenance requirements for switchboards and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
3. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
B. Source Limitations: Obtain switchboards through one source from a single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NEMA PB 2, "Deadfront Distribution Switchboards."

F. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver in sections or lengths that can be moved past obstructions in delivery path.

B. Store indoors in clean dry space with uniform temperature to prevent condensation. Protect from exposure to dirt, fumes, water, corrosive substances, and physical damage.

C. Handle switchboards according to NEMA PB 2.1 and NECA 400.

1.7 PROJECT CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:

1. Ambient Temperature: Not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Owner’s written permission.

1.8 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 “Hangers and Supports for Electrical Systems.”
1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Potential Transformer Fuses: 2 of each size and type.
2. Control-Power Fuses: 2 of each size and type.
3. Fuses for Fused Switches: Equal to 10 percent of amount installed for each size and type, but no fewer than 3 of each size and type.
4. Indicating Lights: 3 of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 MANUFACTURED UNITS

A. Manufacturers:

1. Eaton Corporation; Cutler-Hammer Products.
3. Siemens Industries, Inc.
4. Square D.

B. Front-Connected, Front-Accessible Switchboard:

1. Main devices over 1200A: Fixed, individually mounted.
2. Main devices below 1200A, panel mounted.
4. Sections rear aligned.

C. Nominal System Voltage: As noted on Drawings.

D. Main-Bus Continuous: As noted on Drawings.

E. Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

F. Enclosure: Steel, NEMA 250, 3R.

G. Enclosure Finish for Outdoor Units: Factory-applied finish in manufacturer's standard green color, undersurfaces treated with corrosion-resistant undercoating.

H. Insulation and isolation for main and vertical buses of feeder sections.

I. Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.
1. Space-Heater Control: Thermostats to maintain temperature of each section above expected dew point.

J. Utility Metering Compartment: Fabricated compartment and section complying with utility company's requirements. If separate vertical section is required for utility metering, match and align with basic switchboard.

K. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

L. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

M. Buses and Connections: Three phase, four wire, unless otherwise indicated.
 a. If bus is aluminum, use copper- or tin-plated aluminum for circuit-breaker line connections.
 b. If bus is copper, use copper for feeder circuit-breaker line connections.
 3. Ground Bus: 1/4-by-2-inch- minimum-size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 4. Contact Surfaces of Buses: Silver plated.
 5. Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 7. Neutral Buses: 100 percent of the ampacity of phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables. Bus extensions for busway feeder neutral bus are braced.

N. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

2.3 SURGE PROTECTIVE DEVICES

A. Direct bus connected type as specified in Division 16 26 Section "Surge Protective Devices."

B. Provide Surge Protective Device for switchboards that are part of the emergency distribution system.

C. Provide Surge Protective Device for switchboards elsewhere where indicated on the drawings.

2.4 OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.
 a. Circuit Breakers 250A and Larger: Magnetic trip element with front-mounted, field-adjustable trip setting with restricted access cover.
B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.

1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
2. Application Listing: Appropriate for application; Type HACR for heating, air-conditioning, and refrigerating equipment.

2.5 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:

1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.
2. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from 5 to 60 minutes.
 i. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent. Accumulated values unaffected by power outages up to 72 hours.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

2.6 CONTROL POWER

A. Control Circuits: 120 V, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
B. Furnish portable test set to test functions of solid-state trip devices without removal from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

3.2 EXAMINATION

A. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

A. Install switchboards and accessories according to NEMA PB 2.1 and NECA 40.

B. Install switchboards and anchor to concrete bases according to utility or manufacturer's recommendations, seismic codes at Project, and requirements in Division 26 Section "Hangers and Supports for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.

D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

E. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.

1. Set field-adjustable switches and circuit-breaker trip ranges.

F. Install spare-fuse cabinet.

3.4 ADJUSTING

A. Adjust circuit breaker trip and time delay settings to values as instructed by the Engineer.

3.5 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."

B. Switchboard Nameplates: Label each switchboard compartment with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.
3.6 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:

1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

B. Testing: Perform the following field quality control tests in accordance with Division 26 section “Electrical Testing.”

1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Sections 7.1, 7.5, 7.6, 7.9, 7.10, 7.11, and 7.14 as appropriate. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments, Equipment, and Reports:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 2) Prepare a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of switchboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 26 2413
SECTION 26 2813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:

1. Cartridge fuses rated 600 V and less for use in switches and switchboards.

1.3 SUBMITTALS
A. Product Data: Include the following for each fuse type indicated:

1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
2. Let-through current curves for fuses with current-limiting characteristics.
3. Time-current curves, coordination charts and tables, and related data.
4. Fuse size for elevator feeders and elevator disconnect switches.

B. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.

1. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
2. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

C. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Division 1 Section "Closeout Procedures," include the following:
 a. Let-through current curves for fuses with current-limiting characteristics.
 b. Time-current curves, coordination charts and tables, and related data.
 c. Ambient temperature adjustment information.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses from a single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with:
 1. NEMA FU 1 – Low Voltage Cartridge Fuses.
 2. NFPA 70 – National Electrical Code.
 3. UL 198C – High-Interrupting-Capacity Fuses, Current-Limiting Types.
 4. UL 198E – Class R Fuses.
 5. UL 512 – Fuseholders.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Fuses: Quantity equal to 10% percent of each fuse type and size, but no fewer than five of each type and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Cooper Bussmann, Inc.
 3. Ferraz Shawmut, Inc.
2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.

1. Feeders: Class L, fast acting RK5, time delay.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Fuses shall be shipped separately. Any fuses shipped installed in equipment, shall be replaced by the Electrical Contractor with new fuses as specified above prior to energization at no additional expense to Owner. All fuses shall be stored in moisture free packaging at job site and shall be installed immediately prior to energization of the circuit in which it is applied.

B. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.3 IDENTIFICATION

A. Install labels indicating fuse rating and type on outside of the door on each fused switch.

END OF SECTION 26 2813
SECTION 26 2816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

B. Related Sections include the following:

1. Division 26 Section “Fuses”.

1.2 SUMMARY

A. This Section includes the following individually mounted, enclosed switches and circuit breakers:

1. Fusible switches.
2. Nonfusible switches.
5. Enclosures.

B. Related Sections:

1.3 DEFINITIONS

A. GD: General duty.
B. GFCI: Ground-fault circuit interrupter.
C. HD: Heavy duty.
D. RMS: Root mean square.
E. SPDT: Single pole, double throw.

1.4 REFERENCES

C. NEMA 250: Enclosures for Electrical Equipment (1000 Volts Maximum).
D. NEMA AB 1: Molded Case Circuit Breakers and Molded Case Switches.
E. NEMA FU 1: Low Voltage Cartridge Fuses.
F. NEMA KS 1: Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).
G. NEMA PB1.1: General Instructions for Proper Installation, Operation, and Maintenance of Panelboards Rated 600 Volts or Less.
H. NEMA PB2.1: General Instructions for Proper Installation, Operation, and Maintenance of Deadfront Switchboards Rated 600 Volts or Less.

1.5 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers’ technical data on features, performance, electrical characteristics, ratings, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
4. UL listing for series rating of installed devices.
5. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

B. Shop Drawings: Diagram power, signal, and control wiring.

C. Qualification Data: For testing agency.

D. Field quality-control test reports including the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Manufacturer's field service report.

F. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current curves, including selectable ranges for each type of circuit breaker.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:

 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 2. Altitude: Not exceeding 6600 feet.

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.9 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Spares: For the following:
a. Potential Transformer Fuses: 2 of each size and type.
b. Control-Power Fuses: 2 of each size and type
c. Fuses for Fusible Switches: Equal to 10 percent of amount installed for each size and type, but no fewer than 3 of each size and type.

2. Spare Indicating Lights: Six of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 FUSIBLE AND NONFUSIBLE SWITCHES

A. Manufacturers:

1. Eaton Corporation; Cutler-Hammer Products.
2. General Electric Co.; Electrical Distribution & Control Division.
3. Siemens Industries, Inc.
4. Square D/Group Schneider.

B. Fusible Switch: NEMA KS 1, quick make, quick-break load interrupter enclosed knife switch Type HD, with clips or bolt pads to accommodate specified fuses, externally operable lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Nonfusible Switch: NEMA KS 1, quick make, quick-break load interrupter enclosed knife switch Type HD, externally operable lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

D. Accessories:

1. Provide early break auxiliary contacts in motor disconnect switches for motors that are fed from variable frequency controllers.
2. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
3. Neutral Kit: Internally mounted; insulated, capable of being grounded, and bonded; and labeled for copper and aluminum neutral conductors.
4. Auxiliary Contact Kit: Auxiliary set of contacts arranged to open before switch blades open.

2.3 ENCLOSURES

A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.

1. Outdoor Locations: NEMA 250, Type 3R.
3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONCRETE BASES

A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.

B. Concrete base is specified in Division 26 Section "Hangers and Supports for Electrical Systems," and concrete materials and installation requirements are specified in Division 3.

3.3 INSTALLATION

A. Comply with applicable portions of NECA 1, NEMA PB 1.1, and NEMA PB 2.1 for installation of enclosed switches and circuit breakers.

B. Mount individual wall-mounting switches and circuit breakers with tops at uniform height, unless otherwise indicated. Anchor floor-mounting switches to concrete base.

C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

D. Install switches with off position down.

E. Install NEMA KS 1 enclosed switch where indicated for motor loads ½ HP and larger and equipment loads greater than 30A.

F. Install toggle disconnect switch, surface mounted, where indicated for motor loads less than ½ HP and equipment loads 30A. and less.

G. Install fuses in fusible disconnect switches.

H. Install flexible liquid tight conduit from toggle disconnect switch to portable equipment. Leave a 6'-0" (1830 mm) whip.

I. Install flexible liquid tight conduit from toggle disconnect switch to stationary equipment.

J. Install control wiring from early break contacts in motor disconnect switch to variable frequency controllers to shut down controller when switch is open.

K. Install equipment on exterior foundation walls at least one inch (25 mm) from wall to permit vertical flow of air behind breaker and switch enclosures.

L. Support enclosures independent of connecting conduit or raceway system.

M. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."

B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate as specified in Division 26 Section "Electrical Identification."

C. Provide adhesive label as specified in Division 26 Section "Electrical Identification" on inside door of each switch indicating UL fuse class and size for replacement.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.

B. Prepare for acceptance testing as follows:
 1. Inspect mechanical and electrical connections.
 2. Verify switch and relay type and labeling verification.
 3. Verify rating of installed fuses.
 4. Inspect proper installation of type, size, quantity, and arrangement of mounting or anchorage devices complying with manufacturer's certification.

C. Testing Agency: Engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

D. Perform the following field tests and inspections and prepare test reports:
 1. Test mounting and anchorage devices according to requirements in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
 2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches. Certify compliance with test parameters.
 3. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.6 for molded-case circuit breakers. Test all NEMA AB1, molded case circuit breakers with thermal magnetic trip or auxiliary, solid-state trip units 100A and larger. Certify compliance with test parameters.

 a. Visual and Mechanical Inspection
 1) Circuit breaker shall be checked for proper mounting and compare nameplate data to Drawings and Specifications.
 2) Operate circuit breaker to ensure smooth operation.
 3) Inspect case for cracks or other defects.
 4) Check internals on unsealed units.

 b. Electrical Tests
 1) Perform a contact resistance test.
 2) Perform an insulation resistance test at 1000 volts dc from pole-to-pole and from each pole-to-ground with breaker closed and across open contacts of each phase.
 3) Perform long time delay time-current characteristic tests by passing three hundred percent (300%) rated current through each pole separately. Record trip time. Make external adjustments as required to meet time current curves.
 4) Determine short time pickup and delay by primary current injection.
 5) Determine ground fault pickup and time delay by primary current injection.
6) Determine instantaneous pickup current by primary injection using run-up or pulse method.
7) Perform adjustments for final settings in accordance with coordination study.
8) For circuit breakers 800A and larger, verify all functions of trip unit by means of secondary injection in lieu of primary injection.

c. Test Values

1) Compare contact resistance or millivolt drop values to adjacent poles and similar breakers. Investigate deviations of more than fifty percent (50%). Investigate any value exceeding manufacturer’s recommendations.
2) Insulation resistance shall not be less than 100 megohms.
3) Trip characteristic of breakers shall fall within manufacturer's published time-current characteristic tolerance band, including adjustment factors.
4) All trip times shall fall within N.E.T.A. Acceptance Testing Specifications, Table 10.7 Circuit breakers exceeding specified trip time at three hundred percent (300%) of pickup shall be tagged defective.
5) Instantaneous pickup values shall be within values shown on N.E.T.A. Acceptance Testing Specifications, Table 10.8 or manufacturer’s recommendations.

4. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.6 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip and time delay settings to values as determined by the protective device coordination study.

3.7 CLEANING

A. On completion of installation, vacuum dirt and debris from interiors; do not use compressed air to assist in cleaning.

B. Inspect exposed surfaces and repair damaged finishes.

END OF SECTION 26 2816
SECTION 26 4313 – SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes SPDs for low-voltage power, control, and communication equipment.

B. Related Sections include the following:

1. Division 26 Section "Wiring Devices" for devices with integral SPDs.

1.3 REFERENCES

E. NEMA 250: Enclosures for Electrical Equipment (1000 Volts Maximum).
F. NEMA LS 1: Low Voltage Surge Protection Devices.

J. UL 1283: Electromagnetic Interference Filters.

1.4 DEFINITIONS

B. SVR: Suppressed voltage rating.

C. SPD: Surge Protective Devices.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.
 1. Include rated capacities, operating weights, dimensions, mounting provisions, operating characteristics, furnished specialties, and accessories.
 2. Provide connection details and wiring diagrams indicating how SPD device is integrated within panelboards and switchgear.

B. Product Certificates: For surge protective devices, signed by product manufacturer certifying compliance with the following standards:
 1. UL 1283.
 2. UL 1449.

C. Field quality-control test reports, including the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Failed test results and corrective action taken to achieve requirements.

D. Operation and Maintenance Data: For surge protective devices to include in emergency, operation, and maintenance manuals.

E. Warranties: Special warranties specified in this Section.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain SPD’s and accessories through one source from a single manufacturer. SPD units integral to switchboards, distribution panelboards and branch circuit panelboards shall be warranted and supported by the panelboard manufacturer.

B. Product Options: Electrical performance of SPD is based on the specific system indicated. Refer to Division 1 Section "Product Requirements."
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Factory Testing: The specified system shall be factory-tested prior to shipment. Testing of each system shall include but not be limited to quality control checks, "Hi-Pot" tests per UL requirements, IEEE C62.41 Category B and C surge tests, UL ground leakage tests and operational and calibration tests.

F. Comply with NEMA LS 1, "Low Voltage Surge Protection Devices." Provide independent test reports demonstrating complete system performance showing compliance.

1.7 PROJECT CONDITIONS

A. Service Conditions: Rate surge protection devices for continuous operation under the following conditions, unless otherwise indicated:

1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage.
2. Operating Frequency: 47 to 63 Hz.
3. Operating Temperature: -40 to 140 deg F (-40 to 60 deg C).
4. Humidity: 0 to 95 percent, noncondensing.
5. Altitude: Less than 20,000 feet (6090 m) above sea level.

1.8 COORDINATION

A. Coordinate location of field-mounted surge suppressors to allow adequate clearances for maintenance.

B. Coordinate surge protection devices with Division 26 Section "Electrical Power Monitoring and Control."

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within five years from date of Substantial Completion.

1.10 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Replaceable Protection Modules: One of each size and type installed.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. General Electric Company.
3. Siemens Industries, Inc.
4. Square D; Schneider Electric.

2.2 SURGE PROTECTIVE DEVICE

A. Surge Protection Device Description: Sine-wave-tracking type, with the following features and accessories:

1. MOV technology for each suppression mode.
2. Fuses, rated at 200-kA interrupting capacity. Provide fusing for each suppression path.
3. Fabrication using bolted compression lugs for internal wiring. No plug-in component modules, quick disconnect terminals or printed circuit boards shall be used in current-carrying paths.
4. Integral disconnect switch which has been tested to the surge current rating of the SP to match or exceed the fault current rating of the board. Use of circuit breakers for disconnecting means is acceptable.
5. LED indicator lights for power and protection status for each phase mounted in panelboard front cover:
 a. Green indicates fully operational circuit.
 b. Red indicates loss of protection.
6. EMI-RFI Noise Rejection: based on MIL-STD-E220A, 50-ohm standard Insertion Loss Test:
 a. 34dB at 100 kHz.
 b. 51dB at 1 MHz.
 c. 54dB at 10 MHz.
 d. 48dB at 100 MHz.
7. The maximum continuous operating voltage (MCOV) for all voltage configurations shall be 115% if nominal or greater.
8. Audible alarm, with silencing switch, to indicate when protection has failed.

B. Peak Single-Impulse Surge Current Rating for service entrance equipment (B2 Rating): 240 kA per phase; 120 kA per mode based on a single pulse, IEEE C62.41 standard 8 x 20 microsecond waveform. Device shall not suffer more than 10% deviation in clamping voltage at specified surge current.

C. Minimum Repetitive Surge Current Capability: 10,000 for service entrance and 5,000 for distribution panels and panelboards impulse per mode in accordance with ANSI/IEEE C62.41 and ANSI/IEEE C62.45 utilizing a Category C3 bi-wave at one minute intervals without suffering either performance degradation or more than 10% deviation of specified UL 1449 Suppression Voltage Ratings at specified surge current.

D. Connection Means:

1. Integral: Bus mounted, parallel connection
2. External: Cable connection, parallel wired.

E. Protection modes and UL 1449 Listed and Recognized Component Surge Voltage Rating for grounded wye circuits with voltages of 480Y/277V, 3-phase, 4-wire circuits shall not exceed the following:
1. Line to Neutral: 1200V.
2. Line to Ground: 1200V
3. Neutral to Ground: 1200V
4. Line to Line: 2000V

2.3 ENCLOSURES

A. NEMA 250, with type matching the enclosure of panel or device being protected.

PART 3 - EXECUTION

3.1 INSTALLATION OF SURGE PROTECTION DEVICES

A. Surge protective devices shall be factory installed in all new distribution equipment.

B. Install devices at service entrance on load side, with ground lead bonded to service entrance ground.

3.2 PLACING SYSTEM INTO SERVICE

A. Do not energize or connect distribution equipment to their sources until surge protection devices are installed and connected.

3.3 FIELD QUALITY CONTROL

A. Testing: Perform the following field tests and inspections and prepare test reports. Test all service entrance and electronic grade panelboard suppressors.

1. After installing surge protection devices, but before electrical circuitry has been energized, test for compliance with requirements.
2. Complete startup checks according to manufacturer's written instructions.
3. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters.

a. Visual and Mechanical Inspection

1) Inspect for physical damage and compare nameplate data with Drawings and Specifications.
2) Inspect for proper mounting and adequate clearances.
3) Check ground lead on each device for individual attachment to ground bus or ground electrode.

B. Remove and replace malfunctioning units and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain surge protection devices. Refer to Division 1.

END OF SECTION 26 4313