PROJECT MANUAL

KCI Relocation

Louis Elliman Building

PREPARED FOR:

WAYNE STATE UNIVERSITY

WSU PROJECT NO.: 629-247637

CONSTRUCTION DOCUMENTS

PROJECT NO.: 20354.001

ISSUE DATE: December 4, 2015

ISSUED FOR: BIDS

SMITHGROUPJJR

DETROIT, MICHIGAN
TABLE OF CONTENTS

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

SECTION 000107 - SEALS PAGE
SECTION 009113 - ADDENDA

DIVISION 01 - GENERAL REQUIREMENTS

SECTION 012300 - ALTERNATES
SECTION 012500 - SUBSTITUTION PROCEDURES
SECTION 012510 - SUBSTITUTION REQUEST FORM
SECTION 012600 - CONTRACT MODIFICATION PROCEDURES
SECTION 012653 - BULLETIN NO.__
SECTION 013110 - REQUEST FOR INFORMATION
SECTION 013300 - SUBMITTAL PROCEDURES
SECTION 013310 - PROJECT SUBMITTAL STAMP
SECTION 013320 - PROJECT SUBMITTAL-TRANSMITTAL FORM
SECTION 013330 - SUBMITTAL COMPLIANCE FORM
SECTION 014000 - QUALITY REQUIREMENTS
SECTION 014200 - DEFINITIONS AND REFERENCES
SECTION 016000 - PRODUCT REQUIREMENTS
SECTION 017300 - EXECUTION
SECTION 017700 - CLOSEOUT PROCEDURES
SECTION 017823 - OPERATION AND MAINTENANCE DATA
SECTION 017839 - PROJECT RECORD DOCUMENTS

DIVISION 02 - EXISTING CONDITIONS

SECTION 024119 - SELECTIVE STRUCTURE DEMOLITION

DIVISION 03 - CONCRETE

SECTION 033053 - MISCELLANEOUS CAST-IN-PLACE CONCRETE

DIVISION 04 - MASONRY

SECTION 042200 - CONCRETE UNIT MASONRY

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

SECTION 072100 - THERMAL INSULATION
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>078413</td>
<td>Penetration Firestopping</td>
</tr>
<tr>
<td>079200</td>
<td>Joint Sealants</td>
</tr>
<tr>
<td>081113.13</td>
<td>Standard Hollow Metal Doors and Frames</td>
</tr>
<tr>
<td>083113</td>
<td>Access Doors and Frames</td>
</tr>
<tr>
<td>081113.13</td>
<td>Standard Hollow Metal Doors and Frames</td>
</tr>
<tr>
<td>083113</td>
<td>Access Doors and Frames</td>
</tr>
<tr>
<td>092216</td>
<td>Non-Structural Metal Framing</td>
</tr>
<tr>
<td>092900</td>
<td>Gypsum Board</td>
</tr>
<tr>
<td>095113</td>
<td>Acoustical Panel Ceilings</td>
</tr>
<tr>
<td>096513</td>
<td>Resilient Base and Accessories</td>
</tr>
<tr>
<td>096519</td>
<td>Resilient Tile Flooring</td>
</tr>
<tr>
<td>099123</td>
<td>Interior Painting</td>
</tr>
<tr>
<td>092216</td>
<td>Non-Structural Metal Framing</td>
</tr>
<tr>
<td>092900</td>
<td>Gypsum Board</td>
</tr>
<tr>
<td>095113</td>
<td>Acoustical Panel Ceilings</td>
</tr>
<tr>
<td>096513</td>
<td>Resilient Base and Accessories</td>
</tr>
<tr>
<td>096519</td>
<td>Resilient Tile Flooring</td>
</tr>
<tr>
<td>099123</td>
<td>Interior Painting</td>
</tr>
<tr>
<td>102600</td>
<td>Wall and Door Protection</td>
</tr>
<tr>
<td>123553.01</td>
<td>Laboratory Casework</td>
</tr>
<tr>
<td>123616</td>
<td>Metal Countertops</td>
</tr>
<tr>
<td>211313</td>
<td>Wet-Pipe Sprinkler Systems</td>
</tr>
<tr>
<td>220517</td>
<td>Sleeves and Sleeve Seals for Plumbing Piping</td>
</tr>
<tr>
<td>220518</td>
<td>Escutcheons for Plumbing Piping</td>
</tr>
<tr>
<td>220523</td>
<td>General-Duty Valves for Plumbing Piping</td>
</tr>
<tr>
<td>220529</td>
<td>Hangers and Supports for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>220553</td>
<td>Identification for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>220719</td>
<td>Plumbing Piping Insulation</td>
</tr>
<tr>
<td>221116</td>
<td>Domestic Water Piping</td>
</tr>
<tr>
<td>221119</td>
<td>Domestic Water Piping Specialties</td>
</tr>
<tr>
<td>221316</td>
<td>Sanitary Waste and Vent Piping</td>
</tr>
<tr>
<td>221319</td>
<td>Sanitary Waste Piping Specialties</td>
</tr>
<tr>
<td>224216.16</td>
<td>Commercial Sinks</td>
</tr>
<tr>
<td>226113</td>
<td>Compressed-Air Piping for Laboratory and Healthcare Facilities</td>
</tr>
<tr>
<td>226213</td>
<td>Vacuum Piping for Laboratory and Healthcare Facilities</td>
</tr>
<tr>
<td>226600</td>
<td>Chemical-Waste Systems for Laboratory and Healthcare Facilities</td>
</tr>
</tbody>
</table>
DIVISION 23 - HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING
SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC
SECTION 230713 - DUCT INSULATION
SECTION 230719 - HVAC PIPING INSULATION
SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC
SECTION 230993 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS
SECTION 231123 - FACILITY NATURAL-GAS PIPING
SECTION 232113 - HYDRONIC PIPING
SECTION 232116 - HYDRONIC PIPING SPECIALTIES
SECTION 232213 - STEAM AND CONDENSATE HEATING PIPING
SECTION 233113 - METAL DUCTS
SECTION 233300 - AIR DUCT ACCESSORIES
SECTION 233423 - HVAC POWER VENTILATORS
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

DIVISION 26 - ELECTRICAL

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS
SECTION 260923 - LIGHTING CONTROL DEVICES
SECTION 262416 - PANELBOARDS
SECTION 262726 - WIRING DEVICES
SECTION 265100 - INTERIOR LIGHTING

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

END OF TABLE OF CONTENTS
SECTION 000107 - SEALS PAGE

<table>
<thead>
<tr>
<th>Architect</th>
<th>Fire Protection Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmithGroupJJR, Inc.</td>
<td>SmithGroupJJR, Inc.</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>Detroit, Michigan</td>
</tr>
<tr>
<td>Jeff Hausman, AIA</td>
<td>Michael Weingartz, PE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plumbing Engineer</th>
<th>Mechanical Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmithGroupJJR, Inc.</td>
<td>SmithGroupJJR, Inc.</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>Detroit, Michigan</td>
</tr>
<tr>
<td>Michael Weingartz, PE</td>
<td>Michael Weingartz, PE</td>
</tr>
</tbody>
</table>

END OF SECTION
DOCUMENT 009113 - ADDENDA

1.1 PROJECT INFORMATION
A. Project Name: WSU KCI Relocation - Elliman Building
B. Owner: Wayne State University
C. Owner Project Number: WSU Project o.: 629-247637
D. Architect: SmithGroupJJR
E. Architect Project Number: 20354.01
F. Date of Addendum:

1.2 NOTICE TO BIDDERS
A. This Addendum is issued to all registered plan holders pursuant to the Instructions to Bidders. This Addendum serves to clarify, revise, and supersede information in the Project Manual, Drawings, and previously issued Addenda. Portions of the Addendum affecting the Contract Documents will be incorporated into the Contract by enumeration of the Addendum in the Owner/Contractor Agreement.
B. The Bidder shall acknowledge receipt of this Addendum in the appropriate space on the Bid Form.
C. The date for receipt of bids is unchanged by this Addendum, at same time and location.
 1. Bid Date: Insert date.

1.3 ATTACHMENTS
A. This Addendum includes no attachments.
B. This Addendum includes the following attached Documents and Specification Sections:
 1. Document <Insert Document number and name>, dated <Insert date>, [(reissued)] [(new)].
 2. Section <Insert Section number and name>, dated <Insert date>, [(reissued)] [(new)].
C. This Addendum includes the following attached Sheets:
 1. General Sheet <Insert number>, dated <Insert date>, [(reissued)] [(new)]Architectural Sheet <Insert number>, dated <Insert date>, [(reissued)] [(new)].
 2. Fire Protection Sheet <Insert number>, dated <Insert date>, [(reissued)] [(new)].
 3. Plumbing Sheet <Insert number>, dated <Insert date>, [(reissued)] [(new)].
 4. Mechanical Sheet <Insert number>, dated <Insert date>, [(reissued)] [(new)].
 5. Electrical Sheet <Insert number>, dated <Insert date>, [(reissued)] [(new)].
D. This Addendum includes the attached Addendum Drawings:
 1. Architectural Addendum Drawing AAD-<Insert number>, dated <Insert date>, revising Sheet <Insert number>.
 2. Fire Protection Addendum Drawing FAD-<Insert number>, dated <Insert date>, revising Sheet <Insert number>.
 3. Plumbing Addendum Drawing PAD-<Insert number>, dated <Insert date>, revising Sheet <Insert number>.
 4. Mechanical Addendum Drawing MAD-<Insert number>, dated <Insert date>, revising Sheet <Insert number>.
 5. Electrical Addendum Drawing EAD-<Insert number>, dated <Insert date>, revising Sheet <Insert number>.

1.4 REVISIONS TO PREVIOUS ADDENDA
A. Addendum No. 1, Item <Insert number>: Document <Insert Document number and name>, [(not reissued)] [(reissued)] [(new document)].
1. Paragraph <Insert number>: <Insert explanatory text>.

B. Addendum No. 1, Item <Insert number>: Specification Section <Insert Section number and name>, [(not reissued)] [(reissued)] [(new document)].
1. Paragraph <Insert number>: <Insert explanatory text>.

1.5 REVISIONS TO DIVISION 00 PROCUREMENT REQUIREMENTS AND CONTRACTING REQUIREMENTS

A. Document <Insert Document number and name>, (not reissued).
1. Paragraph <Insert number>: <Insert explanatory text>.

1.6 REVISIONS TO DIVISION 01 GENERAL REQUIREMENTS

A. Specification Section <Insert Section number and name>, (not reissued).
1. Paragraph <Insert number>: <Insert explanatory text>.

1.7 REVISIONS TO DIVISIONS 02 - 49 SPECIFICATION SECTIONS

A. Specification Section <Insert section number and name>, (not reissued).
1. Paragraph <Insert number>: <Insert explanatory text>.

1.8 REVISIONS TO DRAWING SHEETS

A. Sheet <Insert number>- <Insert title> (not reissued).
1. Drawing <Insert number>: <Insert explanatory text>.

END OF DOCUMENT
SECTION 012300 - ALTERNATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes administrative and procedural requirements for alternates.

1.3 DEFINITIONS
 A. Alternate: An amount proposed by bidders and stated on the Bid Form for certain work defined in the bidding requirements that may be added to or deducted from the base bid amount if Owner decides to accept a corresponding change either in the amount of construction to be completed or in the products, materials, equipment, systems, or installation methods described in the Contract Documents.
 1. Alternates described in this Section are part of the Work only if enumerated in the Agreement.
 2. The cost or credit for each alternate is the net addition to or deduction from the Contract Sum to incorporate alternate into the Work. No other adjustments are made to the Contract Sum.

1.4 PROCEDURES
 A. Coordination: Revise or adjust affected adjacent work as necessary to completely integrate work of the alternate into Project.
 1. Include as part of each alternate, miscellaneous devices, accessory objects, and similar items incidental to or required for a complete installation whether or not indicated as part of alternate.
 B. Notification: Immediately following award of the Contract, notify each party involved, in writing, of the status of each alternate. Indicate if alternates have been accepted, rejected, or deferred for later consideration. Include a complete description of negotiated revisions to alternates.
 C. Execute accepted alternates under the same conditions as other work of the Contract.
 D. Schedule: A schedule of alternates is included at the end of this Section. Specification Sections referenced in schedule contain requirements for materials necessary to achieve the work described under each alternate.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES
 A. Add Alternate No. 1:
 1. Base Bid: Existing rooms 1117, 1121, 1125 all to remain as is, unless noted otherwise as indicated on Sheets AD2.01, MD2.1, ED2.1
 2. Alternate: Provide new casework as indicated and all related services for new casework shown. as indicated on Sheets A2.01, A3.01, P2.1 MD2.1, M2.1, M3.1, M4.1, ED2.1, E2.1, E4.1
 B. Add Alternate No 2
 1. Base bid: Existing Room 0205 to remain a storage room. Work shown to be done noted as base bid to be included. Refer to sheets; AD2.01, A2.01, FP2.0, PD2.0, PD2.U, P2.0, MD2.0, M2.0, M3.0, M4.01, ED2.0, E2.0
2. Alternate: Provide all work shown as part of Alternate #2 on drawings to make room 0205 into a new procedure room. Scope of work to include but not be limited to Painting, Masonry, flooring Demo existing ceiling and provide new gypsum board ceiling, lights, diffusers, plumbing etc as shown on sheets; AD2.01, A2.01, A3.01, FP2.0, PD2.0, PD2.U, P2.0, MD2.0, M2.0, M3.0, M4.01, ED2.0, E2.0

END OF SECTION
SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for:
 1. Proposed product list.
 2. Substitutions after Agreement is executed.

B. Related Requirements:
 1. The procedures governing substitution requests prior to Agreement execution are defined elsewhere.
 2. Section 012300 "Alternates" for products selected under an alternate.
 3. Section 012510 "Substitution Request Form."
 4. Divisions 02 through 49 Sections for specific requirements and limitations for substitutions.

1.3 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.4 ACTION SUBMITTALS

A. Proposed Products List and Substitution Requests:
 1. Intent:
 a. To fully identify, prior to beginning the Work, the products Contractor intends to provide, and substitutions the Contractor requests.
 b. To facilitate timely submittal processing by avoiding rejection of unacceptable products and unspecified products later during construction.
 2. Proposed Products List:
 a. Within 14 calendar days after date of receipt of notice to proceed and before submitting any Product Submittals, submit for approval the list of the products proposed for installation. Include the name of the manufacturer for each product and, where applicable, the name of Subcontractor.
 b. The list shall be tabulated by and be complete for each Specification Section.
 c. For each product listed, clearly indicate: a) As Specified, or b) Not As Specified. For each product designated Not As Specified, clearly indicate: c) Comparable Product, or d) Proposed Substitution.

B. Substitution Requests Accompanying the Proposed Products List:
 1. A request for substitution will be considered, subject to the following requirements:
 a. Include with the proposed products list a completed substitution request form for each proposed substitution anticipated for the Project. Check the box indicating the request is submitted with the proposed products list.
b. Submit each proposed substitution using a separate copy of the substitution request form.
Use substitution request form included in the Project Manual, or request form from the
Architect. See Section 012510 “Substitution Request Form.” Submit in number of
copies specified for proposed product list.

c. The substitution request is submitted at the time the proposed products list is submitted. A
request submitted after the time set for submittal of the proposed products list is subject to
automatic rejection.

d. Include with the request complete data on the proposed substitution. Such data shall
include:
1) Product Data highlighted to show applicability to the proposed substitution and
project conditions;
2) Performance and test data;
3) References, and samples, where applicable; and
4) An itemized comparison of the proposed substitution with the product features
specified in the Contract Documents, including data relating to design and artistic
effect, where applicable.

e. Include copies of the pertinent Contract Documents, clearly marked and highlighted to
show changes necessary to accommodate the proposed substitution.

f. If the proposed substitution is due to unavailability of a specified product, a written
statement shall accompany it, written by the supplier of the specified product, confirming
lack of availability.

g. By submitting the substitution request, Contractor affirms that: 1) the proposed substitution
conforms to the required dimensions and meets or exceeds the standards of required
function, appearance, and quality set by the specified product: and 2) the burden of proof
rests with the Contractor.

h. By submitting a substitution request, Contractor agrees to absorb all costs resulting from
acceptance of the proposed substitution, including both known and subsequently
discovered revisions to other construction needed to accommodate the substitution, and
other expected and unforeseen costs, such as delays, code approval-related expenses, and
additional architectural services.

C. Substitution Requests After Proposed Products List:

1. Use no product in the Work that is not named in the Contract Documents, or not listed in the
Proposed Products List, or not approved as a substitute or comparable product. Products
specified solely by reference standard or performance requirements do not require naming.

2. During construction of the Work, products not listed on the accepted Proposed Products List shall
not be used without receipt of an approved substitution request for a listed product. A
substitution request will be considered under one of the following conditions:

a. The product listed on the accepted Proposed Product List becomes unavailable. Include
with the substitution request a letter from the listed manufacturer, on the manufacturer's
letterhead, verifying that the product is no longer available.

b. Conditions uncovered at the Site render the listed product inappropriate, or an undesirable
choice for the conditions uncovered. Include with the substitution request a full
description of the uncovered conditions and why the requested substitution is preferable to
the listed product.

3. Make each substitution request on the specified substitution request form. Fully execute form in
accordance with the provisions of Article, Proposed Products List and Accompanying Substitution
Requests, except for provisions requiring submittal concurrent with proposed products list.
Check the box indicating the Contractor's request is being submitted separate from and after
submittal of the proposed products list

D. A request for substitution forwarded by the Contractor means that Contractor:

1. Has investigated the proposed substitution.
2. Has determined that the substitution is equal to or superior in quality and serviceability (performance) to the product specified in the Contract Documents.
3. Will provide the same guarantee for the substitution that is required for the product specified in the Contract Documents.
4. Waives all claims for additional costs that subsequently become apparent as a result of the substitution.
5. Will coordinate the installation of the accepted substitution into the Work, and will make such changes in the Work of the various trades as may be required to provide a completed condition.

E. A request for a substitution will not be considered if:
1. The substitution is merely indicated or implied on the Shop Drawing or Product Data submittal without the specified formal request and documented proof of conformance. Submittal approvals for items not meeting specifications are not valid. Completed construction related to such items is subject to rejection.
2. Implementation requires a major revision of the Contract Documents in order to accommodate the substitution.
3. The substitution request is substantially incomplete.

F. Architect's Review of Proposed Products List and Substitution Requests:
1. The Architect will review properly submitted proposed products list and accompanying substitution requests.
2. The Architect will evaluate each substitution request and inform Contractor in writing whether the proposed substitution is accepted, accepted as noted, or not accepted.
 a. Substitution requests that do not conform to requirements, including submittal timing, are subject to return without review.
 b. A substitution will not be considered accepted by the Owner until it has been documented by Change Order.
3. The Architect's decision as to conformance and acceptability will be consistent with the intent of the Contract Documents.
4. In the absence of written acceptance of a substitution request, proposed substitutions shall be understood as not accepted.
5. The Architect will endeavor to evaluate the substitution request in a reasonable period of time. With the request, the Contractor shall inform the Architect of the deadline for final decision on the request. In the absence of Architect's decision within the critical time, the Contractor shall proceed with the specified product.

G. Product List and Substitution Request Format:
1. Product List: Provide PDF of the list.
2. Substitution Requests: Provide PDF of requests.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 PROCEDURES

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.
PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.

1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Requested substitution provides sustainable design characteristics that specified product provided.
 c. Substitution request is fully documented and properly submitted.
 d. Requested substitution will not adversely affect Contractor's construction schedule.
 e. Requested substitution has received necessary approvals of authorities having jurisdiction.
 f. Requested substitution is compatible with other portions of the Work.
 g. Requested substitution has been coordinated with other portions of the Work.
 h. Requested substitution provides specified warranty.
 i. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Architect will consider requests for substitution if received within 60 days after the Notice to Proceed. Requests received after that time may be considered or rejected at discretion of Architect.

1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 b. Requested substitution does not require extensive revisions to the Contract Documents.
 c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 d. Requested substitution provides sustainable design characteristics that specified product provided.
 e. Substitution request is fully documented and properly submitted.
 f. Requested substitution will not adversely affect Contractor's construction schedule.
 g. Requested substitution has received necessary approvals of authorities having jurisdiction.
 h. Requested substitution is compatible with other portions of the Work.
 i. Requested substitution has been coordinated with other portions of the Work.
 j. Requested substitution provides specified warranty.
 k. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 012510 - SUBSTITUTION REQUEST FORM

Project: Refer to page header above. Additional Package/Contract Info:

Date of Request: CM/GC Tracking No.: SG Tracking No.:

This substitution request is governed by the provisions of Section 012500.

- This Substitution Request is submitted during the bidding period.
- This Substitution Request is submitted with Proposed Products List dated
- This Substitution Request is submitted separate from and after submittal of the Proposed Products List.

RE:

Specifications Section Title
Section No. Page Paragraph

PROPOSED SUBSTITUTION:
This substitution request is governed by, and complies with, the provisions of Section 012500 "Substitution Procedures."

Reason for Substitution:

General Description:

The accompanying attachments, per the provisions governing substitutions, provide a full description of the proposed substitution. The proposed substitution includes the following changes:

- To Contract Sum: None Add: Deduct:
- To Contract Time: None Add: Deduct: days

Assumption of Responsibility for Equal Performance
The Construction Manager/General Contractor that is submitting this request affirms that the proposed substitution conforms to required dimensions and meets or exceeds the standards of required function, appearance, and quality established by the specified product. Requester understands and affirms compliance with the provisions governing substitutions.

Requester’s Name Date

Requesting Firm: CM or CG only

Notes:
1. Transmit substitution request to Architect’s Project Manager.
2. Do not transmit substitution request as part of product submittal.
3. Do not transmit product submittal for substitution item until substitution is accepted by Owner and Architect.
4. Owner’s Acceptance of substitution request is not complete until documented through addendum or contract modification.

ARCHITECT’S REVIEW:
The proposed substitution is:
- Not Reviewed; Not Accepted; Accepted As Noted; Accepted

Remarks:

Name Date

cc: Owner; CM/GC, project specifier

OWNER’S REVIEW:
The proposed substitution is:
- Not Reviewed; Not Accepted; Accepted As Noted; Accepted

Remarks:

Name Date

cc: Architect; CM/GC, project specifier

END OF SECTION

SUBSTITUTION REQUEST FORM 012510 - 1

v.R 8/13
SECTION 012600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for handling and processing Contract modifications.

1.3 MINOR CHANGES IN THE WORK
A. Architect will issue through Construction Manager supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710, "Architect's Supplemental Instructions." form included in Project Manual.

1.4 PROPOSAL REQUESTS
A. Owner-Initiated Proposal Requests: Architect Construction Manager will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 1. Work Change Proposal Requests issued by Architect Construction Manager are not instructions to stop work in progress or to execute the proposed change.
 2. Within time specified in Proposal Request 20 days, when not otherwise specified, after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 c. Include costs of labor and supervision directly attributable to the change.
 d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 e. Quotation Form: Use forms acceptable to Architect.

B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect Construction Manager.
 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 4. Include costs of labor and supervision directly attributable to the change.
 5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
6. Comply with requirements in Section 012500 "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.

1.5 CHANGE ORDER PROCEDURES

A. On Owner's approval of a Work Changes Proposal Request, Construction Manager will issue a Change Order for signatures of Owner and Contractor on AIA Document G701.

1.6 CONSTRUCTION CHANGE DIRECTIVE

1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.

B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.

1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 012653 - BULLETIN NO.__
DATE: __________, 20__
Prepared By: [Insert PM Name]
NOTE: THIS IS NOT AN ORDER TO PROCEED
This [Bulletin] [Change Proposal Request] is issued after award of Contract to inform the Contractor of proposed revisions to the Contract and is a request for a proposal from the Contractor. The document may include clarification items which do not change the Contract price or time.
This Bulletin is issued after receipt of bids and prior to award of Contract to inform the apparent successful Bidder of certain revisions to the proposed Contract Documents. The Bulletin may include clarification items which do not change the Contract price or time.
All requirements contained in the Contract Documents shall apply to this document. The general character of the Work required by this document shall be the same as originally set forth in the applicable portions of the Contract Documents for similar Work, unless otherwise specified herein. Incidental Work necessitated by this document required to complete the Work shall be included in the [Contractor’s][Bidder’s] proposal even though not particularly mentioned herein.
[Contractor][Bidder] shall submit for approval a completely itemized quotation in accordance with the provisions for the pricing of changes in the Work in the Conditions of the Contract, including proposed change in the Contract Time, if any. Organize quotation items to match this document’s itemization.
Contractor shall not proceed with the Work of this document until in receipt of a Change Order in connection therewith.

PART 1 - NEW DOCUMENTS ISSUED WITH THIS DOCUMENT

1.1 NEW PROJECT MANUAL DOCUMENTS AND SPECIFICATIONS
 A. EXAMPLE: Section 005522 – Unit Price Schedule.

1.2 NEW DRAWING SHEETS
 A. EXAMPLE: A1, A2, A3, A4, A5, S1, S2, S3.

1.3 NEW SKETCHES
 A. EXAMPLE: M1-060299 (ref. M-2), M2-060299 (ref. M-6)

BULLETIN NO.__
v.R 8/13
PART 2 - DOCUMENTS DELETED BY THIS DOCUMENT

2.1 DELETE THE FOLLOWING FROM THE PROJECT MANUAL
 A. Nnnnnnn - Section Title

2.2 DELETE THE FOLLOWING DRAWING SHEETS
 A. A1-202

PART 3 - REVISED DOCUMENTS ISSUED WITH THIS DOCUMENT

3.1 REVISED PROJECT MANUAL DOCUMENTS AND SPECIFICATIONS
 A. EXAMPLE: Nnnnnn – Section Title.

3.2 REVISED DRAWING SHEETS
 A. EXAMPLE: A1, A2, A3, A5, S1, S3.

PART 4 - PROPOSED CHANGES IN THE WORK

4.1 REVISE OFFICE LAYOUT: (EXAMPLE 1)
 1. Refer to revised Documents:

4.2 RELOCATE SKYWALK: (EXAMPLE 2)
 A. General: Relocate Skywalk
 1. Refer to revised Documents:
 b. Revise finned radiation covers in existing building at Skywalk from painted steel sheet to marble, similar to covers in existing building.
 1. Refer to new Documents:
 b. Sketch: A3-100399.
 2. Refer to revised Documents:
 b. Re-issued Drawings: A3-16, M2-1.
 c. Drawing A3-15 (not issued).
 1) Cross Section A-A: Revise dimension to coordinate with A3-15 revisions.

4.3 [ITEM NAME]
 A. General: [give brief description of change] Reference [the specification section or detail that is changing].
 1. Refer to new Documents:
 a. Sections
 b. Drawings
 c. Sketches
 2. Refer to revised Documents:
 a. Re-issued Section ______
 b. Section ______ (not issued). Reference and describe change)
PART 5 - CLARIFICATIONS

5.1 SECTION 082100 – ALUMINUM DOORS
 A. 2.1.A.3: To the list of acceptable door manufacturers, add U.S. Aluminum Co. to coordinate with Section 089100 – Aluminum Curtainwall.

5.2 DRAWING A-42 - BEAM SIZE
 A. Detail 5: change beam size to agree with Drawings S-3, S-5, S-6.

END OF SECTION
SECTION 013110 - REQUEST FOR INFORMATION

(This form is to be transmitted from GC or CM to SmithGroupJJR) RFI NO.:
DATE TRANSMITTED: ; Bid Pack: ; Trade Contract:
Response requested from: ☐ Civil; ☐ Struct; ☐ Arch; ☐ Mech; ☐ Elec; ☐ Other
Brief description of RFI: (give details below):

PROVIDE SPECIFIC REFERENCES:
example: 019999 2.2.A.1

PROVIDE DRAWING REFERENCES:
Contractor requests information for the following from SmithGroupJJR:
(Note: Request information for only 1 item per RFI. This permits individual handling and expedites response.)

☐ This box, if checked, indicates a potential change to the Contract Sum associated with this RFI.
The change is in the range of $ to $.
☐ This box, if checked, indicates a potential change to the Contract Time associated with this RFI.
The change is in the range of days to days
Requested By: (name):
(After saving file, email or fax to SGJJR project secretary: @smithgroupjjr.com 313.442.)
SmithGroup response: Date Received:

☐ SGJJR DOES NOT expect a change to the ☐ Contract Sum ☐ Contract Time related to this RFI.
☐ SGJJR expect a change to the ☐ Contract Sum ☐ Contract Time related to this RFI.
Response By: Date:
Date Transmitted: (Indicate the recipients and the means of transmittal below)

END OF SECTION
SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

1.3 DEFINITIONS
 A. Contractor: Refers to an entity in direct Contract with the Owner to perform the Work of the Contract. Contractor shall review and approve product submittals.
 1. Contractor also refers to a Construction Manager that contracts directly with other entities to perform required work.
 B. Product Submittals: In general, Product Submittals show characteristics of the proposed construction in one of the following forms:
 1. Shop Drawings: Drawings, diagrams, schedules and other data specially prepared for the Work by the Contractor or a Subcontractor, Sub-subcontractor, manufacturer, supplier, or distributor to illustrate some portion of the Work.
 2. Product Data: Illustrations, standard schedules, performance charts, color charts, instructions, brochures, diagrams, and other information furnished by the Contractor to illustrate materials or equipment for some portion of the Work.
 a. Product Data does not include Material Safety Data Sheets. Do not submit MSDS. They will be returned without review.
 3. Samples: Physical examples that illustrate materials, equipment, or workmanship and establish standards by which the Work will be judged.
 C. File Transfer Protocol (FTP): Communications protocol that enables transfer of files to and from another computer over a network and that serves as the basis for standard Internet protocols. An FTP site is a portion of a network located outside of network firewalls within which internal and external users are able to access files.

1.4 ACTION SUBMITTALS
 A. Submittal Compliance Form: Allowed in lieu of some product data and sample submittals. See individual specification sections for specific allowable use. By submitting the form, the Contractor certifies that all products specified in the Section are being submitted exactly as indicated, including all options and features indicated, with no substitutions or comparable products. Where a Basis-of-Design manufacturer/product is indicated, along with a list of other manufacturers, the Contractor certifies that only the Basis-of-Design manufacturer/product will be provided and not any other listed manufacturers/products. Where a single manufacturer/product is indicated, even if specified as "available manufacturer" or manufacturer "included but not limited to the following", Contractor certifies that only the indicated single manufacturer/product will be provided.
 1. Fill in the information required for Document 013330 "Submittal Compliance Form" and include as a line item on the Submittal Cover Sheet for each applicable Submittal.
2. Upon receipt, the Architect will complete the form in the space below "Architect Action" and indicate the Action on the Submittal Cover Sheet.

3. Procedures and processing time are the same as indicated in this Section.

B. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections. Note that submittal schedule is a separate document required in addition to the construction schedule.

1. Submit all required types of submittals for each product together. For example: Shop Drawings will not be reviewed when related Samples, Product Data, and test reports have not been submitted.

2. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.

3. Initial Submittal: Submit initial Submittals Schedule not more than 7 days after receipt of reviewed Proposed Products List, or concurrently with start-up construction schedule. Include submittals required during the first 60 days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.

4. Submit revised submittal schedule to reflect changes in current status and timing for submittals. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule. Categorize submittal items by type, and designate the respective types by type code. Refer to code definitions below.

5. "Latest possible date" means the date of receipt by Architect. This date allows for review and return to Contractor in time to meet the construction schedule.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Shop Drawings</td>
</tr>
<tr>
<td>PD</td>
<td>Product Data</td>
</tr>
<tr>
<td>S</td>
<td>Sample</td>
</tr>
<tr>
<td>DC</td>
<td>Design calculations</td>
</tr>
<tr>
<td>L</td>
<td>Letter</td>
</tr>
<tr>
<td>SoC</td>
<td>Statement of Compliance</td>
</tr>
<tr>
<td>Cer</td>
<td>Certificate/Certification</td>
</tr>
<tr>
<td>Q</td>
<td>Qualifications statement (such as for Contractor, fabricator, or erector.)</td>
</tr>
<tr>
<td>SC</td>
<td>Sample construction (such as mock-up or sample installation.)</td>
</tr>
<tr>
<td>InI</td>
<td>Installation instructions</td>
</tr>
<tr>
<td>AT</td>
<td>Acceptance Test</td>
</tr>
<tr>
<td>OpI</td>
<td>Operating instructions</td>
</tr>
<tr>
<td>MaI</td>
<td>Maintenance instructions</td>
</tr>
<tr>
<td>MAA</td>
<td>Maintenance agreement</td>
</tr>
<tr>
<td>MaM</td>
<td>Maintenance materials</td>
</tr>
<tr>
<td>Rcp</td>
<td>Receipt (such as for keys, tools, and detachable parts, including delivery tickets.</td>
</tr>
<tr>
<td>RD</td>
<td>Record Documents</td>
</tr>
<tr>
<td>SW</td>
<td>Special Warranty</td>
</tr>
<tr>
<td>TR</td>
<td>Test Report</td>
</tr>
</tbody>
</table>
1.5 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Requirements specified for submittals are intended to provide efficient handling, while permitting review responsibilities to be carried out.

B. Architect will accept submittals only from the Contractor. Only items specified to be submitted will be accepted.

C. Bind submittals in a manner suitable for 8-1/2 by 11-inch file folder storage, except where doing so is not workable.

D. Transmit submittals with all transportation charges prepaid.

E. Avoidable Resubmittals
 1. The first two reviews of each specified submittal will be processed without cost to the Contractor. After the second review, the Owner may charge the Contractor for the cost of such additional processing, unless the processing results from approved Change Orders causing revisions to previously approved submittals.

F. MSDS: Do not submit Material Safety Data Sheets. If MSDS are required by the Contract Documents, request clarification of instructions from the Architect.

G. Review Stamp
 1. Contractor shall purchase one or more rubber stamps of the Review Stamp form shown in the Project Manual in as many copies as Contractor may require.
 2. The Review Stamp form may be reproduced on adhesive-backed transparencies ("sticky-backs"), or electronically embedded on Shop Drawings. An electronic file is available through request to the Architect's Project Manager.
 3. Affix the Review Stamp form to submittals. Refer to “Affixing Review Stamp” heading in this Section.
 4. Do not revise Review Stamp wording or format. Change in the size of the stamp shall be approved prior to use.
 5. Do not include additional review stamps or notes that contradict the Review Stamp wording.
 6. The Contractor shall sign and date each instance of the Review Stamp, providing evidence that Contractor has reviewed the submittal and fulfilled contractual requirements for verification and coordination. The Contractor shall address all items within the Contractor Action area of the Stamp.

H. Architect's Digital Data Files:
 1. With the Owner's concurrence, electronic copies of files used to create the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals, subject to the Architect's electronic file transfer agreement. The Contractor shall expect, and shall so agree, to execute and deliver the Architect's agreement before the transfer of such Instruments of Service.
 2. The Contractor shall expect, and shall so agree, to pay fees to the Architect related to the transfer of Instruments of Service. Fees shall be paid before transfer. The payment of fees to the Architect reflects administrative costs only and are not, in any way, to indicate a "sale" of goods under the Uniform Commercial Code.
 3. Request the Architect's electronic file transfer agreement form. Submit the request for file transfer directly to the Architect. Include the executed agreement, check made payable to SmithGroupJJR, Inc., and a list of documents requested, as identified in the Contract Documents.
 4. The files will not be identical to the Contract Drawings. Prior to requesting files, discuss with the Architect how the files will differ from the Contract Documents, and related limitations, such as which Drawings will not be represented, the file format, what information will be included, and method of transmittal.
 5. The Architect's fee for providing electronic files to the Contractor is as follows:
 a. 1 to 10 drawings: $250 set-up charge plus $25 per drawing
b. 11 to 100 drawings: $500 set-up charge plus $5 per drawing

c. 101 to 500 drawings: $1,000 set-up charge plus $2 per drawing.

I. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
 4. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 a. the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

J. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 1. Initial Review: Allow [10] <Insert number> business days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required.
 2. When a large volume of submittal materials is scheduled, additional review time may be required. Similarly, a particular submittal may require review completion in less than the agreed normal time. Due to variations in submittal volume and processing needs, agreed review time is not intended to apply to extreme conditions.

K. Maintain at the Project Site ready access to the latest reviewed Shop Drawings and Product Data, and one set of samples.

PART 2 - PRODUCTS

2.1 PREPARING SUBMITTALS

A. Title Block for Product Submittals
 1. Shop Drawings, the cover sheets for Product Data, and the labels for Samples shall each have an identifying title block containing:
 a. Project title.
 c. Brief description of submittal item matching the description on the Submittal Form.
 d. Contractor's name and project or contract number.
 e. Name and phone number of manufacturer, supplier, subcontractor, or other such organization furnishing the submittal to the Contractor.

PART 3 - EXECUTION

END OF SECTION
Project Submittal Stamp

SECTION 01 33 10

PROJECT SUBMITTAL STAMP

<table>
<thead>
<tr>
<th>Contractor Action</th>
<th>Architect Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>This submittal is required by Spec Section No. & Para No’s:</td>
<td>Architect’s review is only for the limited purpose of checking for general conformance with information given and the design concept expressed in the Contract Documents. The results of Architect’s review are entered in the table below. The Final Review Code prevails.</td>
</tr>
<tr>
<td>Section No:</td>
<td>Legend - Submittal is:</td>
</tr>
<tr>
<td>and Paragraph No(s):</td>
<td>Code</td>
</tr>
<tr>
<td>Submittal Package No. / Partial No. / Revision No. (below):</td>
<td>APROVED</td>
</tr>
<tr>
<td>/ /</td>
<td>AP</td>
</tr>
<tr>
<td>Item No:</td>
<td>APPROVED AS NOTED</td>
</tr>
<tr>
<td>Date Submitted:</td>
<td>AN</td>
</tr>
<tr>
<td>Shop Drawings</td>
<td>APPROVED AS NOTED – RESUBMIT</td>
</tr>
<tr>
<td>Product Data</td>
<td>AN-R</td>
</tr>
<tr>
<td>Compliance Certif.</td>
<td>REJECTED</td>
</tr>
<tr>
<td>Test Reports</td>
<td>REJ</td>
</tr>
<tr>
<td>LEED</td>
<td>NOT REQUESTED BY CONTRACT DOCUMENTS</td>
</tr>
<tr>
<td>Samples</td>
<td>X__</td>
</tr>
<tr>
<td>Mock-ups</td>
<td>Discipline</td>
</tr>
<tr>
<td>Other:</td>
<td>Reviewed By</td>
</tr>
<tr>
<td>Partial Submittal</td>
<td>Date</td>
</tr>
<tr>
<td>Re-Submittal</td>
<td>Code</td>
</tr>
<tr>
<td>Contractor affirms that:</td>
<td>Final Code:</td>
</tr>
<tr>
<td>(1) It is responsible for quantities, weights, and dimensions to be confirmed and correlated at the site; for information that pertains solely to the fabrication processes and to the means, methods, techniques, sequences, and procedures of construction; and for coordination of the work of all trades.</td>
<td></td>
</tr>
<tr>
<td>(2) The Submittal to which this stamp is affixed is in conformance with information given and the design concept expressed in the Contract Documents. Reviewed and approved for Contractor by:</td>
<td></td>
</tr>
</tbody>
</table>

Signed

Date
PROJECT SUBMITTAL FORM

DO NOT COVER THIS ROUTING TRANSMITTAL WITH A SEPARATE TRANSMITTAL

<table>
<thead>
<tr>
<th>GC or CM Project No.</th>
<th>Submittal No.</th>
<th>P</th>
<th>R</th>
<th>Page No.</th>
<th>Total Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>or CM Submittal No.</td>
<td>Spec. Section No.</td>
<td>& Title:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 1. ROUTING

<table>
<thead>
<tr>
<th>Step</th>
<th>From</th>
<th>To</th>
<th>Date Sent</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trade Contractor, Manufacturer, Supplier</td>
<td>General Contractor or CM</td>
<td>MD/YY</td>
<td>MD/YY</td>
</tr>
<tr>
<td>2</td>
<td>General Contractor or CM</td>
<td>SmithGroup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SmithGroup</td>
<td>GC or CM and Owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>General Contractor or CM</td>
<td>Trade Contractor, Manufacturer, Supplier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 2. CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Manufacturer or Supplier</th>
<th>Trade Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm Name</td>
<td></td>
</tr>
<tr>
<td>Contact, Email</td>
<td></td>
</tr>
<tr>
<td>Phone, Fax</td>
<td></td>
</tr>
<tr>
<td>GC or CM</td>
<td>Owner</td>
</tr>
<tr>
<td>Firm Name</td>
<td></td>
</tr>
<tr>
<td>Contact, Email</td>
<td></td>
</tr>
<tr>
<td>Phone, Fax</td>
<td></td>
</tr>
</tbody>
</table>

SmithGroup Contact: Email: @SmithGroup.com Phone: Fax:

STEP 3. SUBMITTAL ITEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Kind Description or Drawing Number and Title</th>
<th>Review Codes - by SmithGroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CIVIL</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: All Approved - All Approved As Noted - N/A - Approved As Noted - Replaced - RES: Not Approved - X: Not Reclassified By Contract Document

Refer to Submittal Form Instructions in 01 32 00. Do not combine informational submittals with action submittals. Do not submit MSDS sheets.

If there are more than 10 items, use the continuation sheet.
SECTION 013330 - SUBMITTAL COMPLIANCE FORM

Instructions:

PART 1 - Use the Submittal Compliance Form only with items that specify its use. Use a separate form for each product.
If this Form is used for items that do not specify its use, the submittal will be returned without review.

PART 2 - Do not submit Product Data and/or Samples for products covered by this form.

PART 3 - This form is available for completing on-screen with Microsoft Word.

Date Submitted: / /201

Submittal Package No / Partial No / Revision No: / / Item No.

Construction Manager/General Contractor: Project No:

Trade or Subcontractor:

This Submittal Compliance Form is required by:
Spec Section No Paragraph Reference(s):

Description of Item:
Manufacturer:
Model No. or Series:
Phone No: Website Address:

By signing below, Contractor certifies that:
PART 4 - The item represented by this Submittal Compliance Form conforms to all Contract requirements and the intent expressed in the Contract Documents.
PART 5 - There is not a substitution of specified products. The exact named product and characteristics will be provided.
PART 6 - Contractor is responsible for: quantities, weights, and dimensions to be confirmed and correlated at the site; information that pertains solely to the fabrication processes; the means, methods, techniques, sequences, and procedures of construction; coordination of the work of all trades.

Reviewed and approved for Contractor by: Print Name: Date:

Architect Action:
Architect’s review is only for the limited purpose of checking that the item is allowed to be submitted under this form.

Legend - Submittal is:

<table>
<thead>
<tr>
<th>Code</th>
<th>Discipline</th>
<th>Date</th>
<th>Reviewed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Architect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REJ</td>
<td>Structural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Mechanical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBMITTAL COMPLIANCE FORM 013330 - 1
v.R 5/12
☐ Other:

END OF SECTION
SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.
B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 3. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, Commissioning Authority, or authorities having jurisdiction are not limited by provisions of this Section.
 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect or Construction Manager.
C. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
D. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.
E. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
F. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
G. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).
H. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.4 CONFLICTING REQUIREMENTS

A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.5 ACTION SUBMITTALS

A. Shop Drawings: For mockups, provide plans, sections, and elevations, indicating materials and size of mockup construction.
1. Indicate manufacturer and model number of individual components.
2. Provide axonometric drawings for conditions difficult to illustrate in two dimensions.

B. Sample Construction: Process submittal for field samples as specified for product submittal, for documentation.

1.6 INFORMATIONAL SUBMITTALS

A. Contractor's Quality-Control Plan: For quality-assurance and quality-control activities and responsibilities.

B. Qualification Data: For Contractor's quality-control personnel.

C. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility sent to authorities having jurisdiction before starting work on the following systems:
1. Seismic-force-resisting system, designated seismic system, or component listed in the designated seismic system quality-assurance plan prepared by Architect.

D. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.

1.7 CONTRACTOR'S QUALITY-CONTROL PLAN

A. Quality-Control Plan, General: Submit quality-control plan within 10 days of Notice to Proceed, and not less than five days prior to preconstruction conference. Submit in format acceptable to Architect. Identify personnel, procedures, controls, instructions, tests, records, and forms to be used to carry out Contractor's quality-assurance and quality-control responsibilities. Coordinate with Contractor's construction schedule.
B. Quality-Control Personnel Qualifications: Engage qualified full-time personnel trained and experienced in managing and executing quality-assurance and quality-control procedures similar in nature and extent to those required for Project.
 1. Project quality-control manager shall not have other Project responsibilities.
 2.

C. Submittal Procedure: Describe procedures for ensuring compliance with requirements through review and management of submittal process. Indicate qualifications of personnel responsible for submittal review.

D. Testing and Inspection: In quality-control plan, include a comprehensive schedule of Work requiring testing or inspection, including the following:
 1. Contractor-performed tests and inspections including subcontractor-performed tests and inspections. Include required tests and inspections and Contractor-elected tests and inspections.
 2. Special inspections required by authorities having jurisdiction and indicated on the "Statement of Special Inspections."

E. Continuous Inspection of Workmanship: Describe process for continuous inspection during construction to identify and correct deficiencies in workmanship in addition to testing and inspection specified. Indicate types of corrective actions to be required to bring work into compliance with standards of workmanship established by Contract requirements and approved mockups.

F. Monitoring and Documentation: Maintain testing and inspection reports including log of approved and rejected results. Include work Architect has indicated as nonconforming or defective. Indicate corrective actions taken to bring nonconforming work into compliance with requirements. Comply with requirements of authorities having jurisdiction.

1.8 REPORTS AND DOCUMENTS

A. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:
 1. Name, address, and telephone number of technical representative making report.
 2. Statement on condition of substrates and their acceptability for installation of product.
 3. Statement that products at Project site comply with requirements.
 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 6. Statement whether conditions, products, and installation will affect warranty.
 7. Other required items indicated in individual Specification Sections.

B. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:
 1. Name, address, and telephone number of factory-authorized service representative making report.
 2. Statement that equipment complies with requirements.
 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 4. Statement whether conditions, products, and installation will affect warranty.
 5. Other required items indicated in individual Specification Sections.
C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.9 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.

F. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.
 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
 2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.

G. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

H. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

1.10 QUALITY CONTROL

A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
 2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.

B. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 013300 "Submittal Procedures."
C. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

D. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

E. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 1. Access to the Work.
 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 4. Facilities for storage and field curing of test samples.
 5. Delivery of samples to testing agencies.
 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 7. Security and protection for samples and for testing and inspecting equipment at Project site.

F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 1. Schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG
 A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 1. Date test or inspection was conducted.
 2. Description of the Work tested or inspected.
 3. Date test or inspection results were transmitted to Architect.
 4. Identification of testing agency or special inspector conducting test or inspection.

 B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's and Construction Manager's reference during normal working hours.

3.2 REPAIR AND PROTECTION
 A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 017300 "Execution."

 B. Protect construction exposed by or for quality-control service activities.

 C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

QUALITY REQUIREMENTS 014000 - 5
v.2/10 (R 7/14)
END OF SECTION
SECTION 014200 - DEFINITIONS AND REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 DEFINITIONS

A. General: Basic Contract definitions are included in the Conditions of the Contract.

B. Definitions are intended to apply to other sections except as otherwise specifically indicated.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td>When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.</td>
</tr>
<tr>
<td>As otherwise agreed</td>
<td>Used in relation to items to be determined after Contract by agreement between Owner, Architect, and Contractor, with input from other entities as appropriate.</td>
</tr>
<tr>
<td>Certified</td>
<td>Guaranteed in writing over the signature of an authorized representative of the certifying organization.</td>
</tr>
<tr>
<td>Directed</td>
<td>An instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."</td>
</tr>
<tr>
<td>Furnish</td>
<td>Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.</td>
</tr>
<tr>
<td>Indicated</td>
<td>Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."</td>
</tr>
<tr>
<td>Install</td>
<td>Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.</td>
</tr>
<tr>
<td>N.I.C./NIC</td>
<td>Not in Contract.</td>
</tr>
<tr>
<td>Necessary</td>
<td>That which is reasonably necessary to the proper completion of the Work.</td>
</tr>
<tr>
<td>Per</td>
<td>In accordance with the requirements of.</td>
</tr>
<tr>
<td>Products</td>
<td>Materials, equipment, or systems.</td>
</tr>
<tr>
<td>Project Site</td>
<td>Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.</td>
</tr>
<tr>
<td>Provide</td>
<td>Furnish and install, complete and ready for the intended use.</td>
</tr>
<tr>
<td>Regulations</td>
<td>Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.</td>
</tr>
<tr>
<td>Replace</td>
<td>To put something new in place of.</td>
</tr>
<tr>
<td>Required</td>
<td>Referring to requirements of the Contract Documents, unless its use clearly implies a different interpretation.</td>
</tr>
<tr>
<td>Shown/indicated</td>
<td>Appearing on the Drawings, unless their use clearly implies a different interpretation.</td>
</tr>
</tbody>
</table>
Term | Definition
--- | ---
Supply | Same as Furnish

1.3 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

C. Copies of Standards: Each entity engaged in the Work of the Project will be held to be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

D. No Change to Contract Responsibilities: No provision of any reference standard, manual, statute, code or regulation (whether or not specifically incorporated by reference in the Contract Documents) shall be effective to change the duties and responsibilities of the Owner, Contractor, Construction Manager, Architect, Architect's consultants, or officers, directors, agents or employees of any of them from those set forth in the Contract Documents, nor shall it be effective to assign to the Architect, Architect's consultants, or officers, directors, agents or employees of any of them any duty or authority to supervise or direct the furnishing or performance of the Work or any duty or authority to undertake responsibility contrary to the Contract provisions.

1.4 ABBREVIATIONS AND ACRONYMS

A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Thomson Gale's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the U.S."

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.
 B. Related Requirements:
 1. Section 012300 "Alternates" for products selected under an alternate.
 2. Section 012500 "Substitution Procedures" for requests for substitutions.
 3. Section 014200 "References" for applicable industry standards for products specified.

1.3 DEFINITIONS
 A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
 B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.4 ACTION SUBMITTALS
 A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
 2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor through Construction Manager of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 a. Form of Approval: As specified in Section 013300 "Submittal Procedures."
 b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Architect will determine which products shall be used.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:
 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:
 1. Store products to allow for inspection and measurement of quantity or counting of units.
 2. Store materials in a manner that will not endanger Project structure.
 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 6. Protect stored products from damage and liquids from freezing.

1.7 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
2. Specified Form: When specified forms are included with the Specifications, prepare a written
document using indicated form properly executed.
3. See other Sections for specific content requirements and particular requirements for submitting
special warranties.

C. Submittal Time: Comply with requirements in Section 017700 "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are
undamaged and, unless otherwise indicated, are new at time of installation.
1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a
complete installation and indicated use and effect.
2. Standard Products: If available, and unless custom products or nonstandard options are specified,
provide standard products of types that have been produced and used successfully in similar
situations on other projects.
3. Owner reserves the right to limit selection to products with warranties not in conflict with
requirements of the Contract Documents.
4. Where products are accompanied by the term "as selected," Architect will make selection.
5. Descriptive, performance, and reference standard requirements in the Specifications establish
salient characteristics of products.
6. Or Equal: For products specified by name and accompanied by the term "or equal," or "or
approved equal," or "or approved," comply with requirements in "Comparable Products" Article to
obtain approval for use of an unnamed product.
7. As Approved: When one or more manufacturers' products are specified followed by the words
"as approved," or words to that effect, including "or equal" and "equal to," comply with specified
submittal and approval requirements for product substitutions.

B. Product Options and Selection Procedures:
1. Named Products, Named Manufacturers:
 a. Restricted List: Where Specifications do not include "as approved" or words to that effect,
such as "or equal," "equal to," and "equivalent to,":
 1) Provide one of the products listed that complies with requirements.
 2) Where Specifications list manufacturers' names without specific products, provide a
 product by one of the manufacturers listed that complies with requirements.
 3) Request for substitute will not be considered, except for reasons specified with
 substitution requirements.
 b. Open List:
 1) As Approved: Where Specifications list one or more manufacturers or products
 followed by the words "as approved," or words to that effect, such as "or equal,"
 "equal to," and "equivalent to," provide one of the listed products/manufacturers.
 To propose another product/manufacturer, the product will be evaluated per
 provisions governing comparable products.
 c. Reference Standards: Where specification is made by reference standard without listing
 product/manufacturer, propose a product that meets the standard. Where additional
 product description modifies the reference standard, proposed product shall meet the
 standard as modified.
 1) A product specified by reference standard shall comply with the requirements of the
 standard in effect on the date of the Bidding Documents, except:
 a) Where a date is specified with the standard; then the edition of the standard
 so dated shall govern.
b) Where the governing code requires compliance to another edition of the standard.

2. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

C. Product Uniformity: It is the intent of the Documents that the completed construction be uniform throughout the Project. For each type of product, the manufacturer and model shall not vary. After a particular product has been identified and approved for an application, that product shall be used for that application across all the subcontracts and other Work-related contracts held by the Contractor or Construction Manager. This provision applies equally to accepted substitutions.

D. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.

1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.

E. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:

1. The product option and selection procedure, as described in this Section, governing the specified product:
 a. Allows the Contractor to make comparable product requests.
 b. Does not require the use of the product substitution procedure

2. Evidence that the proposed product does not require revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.

3. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.

4. Evidence that proposed product provides specified warranty.

5. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.

6. Samples, if requested.

7. By proposing a product that is not listed, for consideration as a comparable product, the Contractor affirms that it meets requirements, except where clearly indicated otherwise. Approval, if granted, will be contingent upon the product meeting requirements as comparable product. In the absence of clear indication of non-compliance in product submittal, approval of the comparable product by Architect, will be based on Contractor's affirmation, whether explicit or implicit.
PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 017300 - EXECUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
1. Installation of the Work.
2. Cutting and patching.
3. Coordination of Owner-installed products.
4. Progress cleaning.
5. Starting and adjusting.
6. Protection of installed construction.

B. Related Requirements:
1. Section 013300 "Submittal Procedures" for submitting surveys.
2. Section 017700 "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.
4. Section 078413 "Penetration Firestopping" for patching penetrations in fire-rated construction.

1.3 DEFINITIONS
A. Cutting: Removal of in-place construction necessary to permit installation or performance of other work.
B. Patching: Fitting and repair work required to restore construction to original conditions after installation of other work.

1.4 QUALITY ASSURANCE
A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection
 a.
2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:
 a. Primary operational systems and equipment.
 b. Fire separation assemblies.
 c. Air or smoke barriers.
 d. Fire-suppression systems.
 e. Mechanical systems piping and ducts.
 f. Control systems.
 g. Communication systems.
h. Fire-detection and alarm systems.

i. Conveying systems.

j. Electrical wiring systems.

k. Operating systems of special construction.

l. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety. Other construction elements include but are not limited to the following:

a. Water, moisture, or vapor barriers.

b. Membranes and flashings.

c. Sprayed fire-resistive material.

d. Equipment supports.

e. Piping, ductwork, vessels, and equipment.

f. Noise- and vibration-control elements and systems.

g. ...

4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

B. Cutting and Patching Conference: Before proceeding, meet at Project site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

C. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

1. For projects requiring compliance with sustainable design and construction practices and procedures, use products for patching that comply with sustainable design requirements.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.

2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.
B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
 2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
 3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION
A. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

B. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

C. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect.

3.3 INSTALLATION
A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 1. Make vertical work plumb and make horizontal work level.
 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.
H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 2. Allow for building movement, including thermal expansion and contraction.
 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.4 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching according to requirements in Section 011000 "Summary."

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize [prevent] interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.
 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
6. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged pipe covering to its original condition.
 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.
 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.5 OWNER-INSTALLED PRODUCTS

A. Site Access: Provide access to Project site for Owner's construction personnel.

B. Coordination: Coordinate construction and operations of the Work with work performed by Owner's construction personnel.
 1. Construction Schedule: Inform Owner of Contractor's preferred construction schedule for Owner's portion of the Work. Adjust construction schedule based on a mutually agreeable timetable. Notify Owner if changes to schedule are required due to differences in actual construction progress.
 2. Preinstallation Conferences: Include Owner's construction personnel at preinstallation conferences covering portions of the Work that are to receive Owner's work. Attend preinstallation conferences conducted by Owner's construction personnel if portions of the Work depend on Owner's construction.

3.6 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.
 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
 a. Use containers intended for holding waste materials of type to be stored.
4. Coordinate progress cleaning for joint-use areas where Contractor and other contractors are working concurrently.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 1. Remove liquid spills promptly.
 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways. Comply with waste disposal requirements as directed by construction manager and in agreement with the owner.

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.7 STARTING AND ADJUSTING

A. Coordinate startup and adjusting of equipment and operating components with all trades involved and owner's representatives.

B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Manufacturer's Field Service: Comply with qualification requirements in Section 014000 "Quality Requirements."

3.8 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.
SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.

1.3 ACTION SUBMITTALS
A. Product Data: For cleaning agents.
B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.4 CLOSEOUT SUBMITTALS
A. Certificates of Release: From authorities having jurisdiction.
B. Certificate of Insurance: For continuing coverage.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 SUBSTANTIAL COMPLETION PROCEDURES
A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Construction Manager. Label with manufacturer's name and model number where applicable.
 a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Construction Manager's signature for receipt of submittals.

5. Submit test/adjust/balance records.
6. Submit sustainable design submittals not previously submitted.
7. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 1. Advise Owner of pending insurance changeover requirements.
 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 3. Complete startup and testing of systems and equipment.
 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.
 6. Advise Owner of changeover in heat and other utilities.
 7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 9. Complete final cleaning requirements, including touchup painting.
 10. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect[and Construction Manager] will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
 2. Results of completed inspection will form the basis of requirements for final completion.

1.7 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
 1. Submit a final Application for Payment .".
 2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction. [Use CSI Form 14.1A.]

1. Organize list of spaces in sequential order, [starting with exterior areas first] [and] [proceeding from lowest floor to highest floor].
2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
3. Include the following information at the top of each page:
 a. Project name.
 b. Date.
 c. Name of Architect and Construction Manager.
 d. Name of Contractor.
 e. Page number.
4. Submit list of incomplete items in the following format:
 a. MS Excel electronic file. Architect, through Construction Manager, will return annotated file.
 b. PDF electronic file. Architect, through Construction Manager, will return annotated file.

1.9 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Partial Occupancy: Submit properly executed warranties within 15 days of completion of designated portions of the Work that are completed and occupied or used by Owner during construction period by separate agreement with Contractor.

C. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch (215-by-280-mm) paper.
 2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
 3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
 4. Warranty Electronic File: Scan warranties and bonds and assemble complete warranty and bond submittal package into a single indexed electronic PDF file with links enabling navigation to each item. Provide bookmarked table of contents at beginning of document.

D. Provide additional copies of each warranty to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.

 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.

 c. Remove tools, construction equipment, machinery, and surplus material from Project site.

 d. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.

 e. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.

 f. Sweep concrete floors broom clean in unoccupied spaces.

 g. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.

 h. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.

 i. Remove labels that are not permanent.

 j. Wipe surfaces of mechanical and electrical equipment, elevator equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.

 k. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.

 l. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.

 m. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.

 n. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.

 o. Leave Project clean and ready for occupancy.
3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
 2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that already show evidence of repair or restoration.
 a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
 4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION
SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 1. Operation and maintenance documentation directory.
 2. Emergency manuals.
 3. Operation manuals for systems, subsystems, and equipment.
 4. Product maintenance manuals.
 5. Systems and equipment maintenance manuals.

1.3 DEFINITIONS
 A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
 B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS
 A. Manual Content: Operations and maintenance manual content is specified in individual Specification Sections to be reviewed at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 1. Architect will comment on whether content of operations and maintenance submittals are acceptable.
 2. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.

 B. Format: Submit operations and maintenance manuals in the following format:
 a. Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 b. Enable inserted reviewer comments on draft submittals.
 2. Three paper copies. Include a complete operation and maintenance directory. Enclose title pages and directories in clear plastic sleeves. Architect, through Construction Manager, will return two copies.

 C. Initial Manual Submittal: Submit draft copy of each manual at least 30 days before commencing demonstration and training. Architect will comment on whether general scope and content of manual are acceptable.

 D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion and at least 15 days before commencing demonstration and training. Architect will return copy with comments.
 1. Correct or revise each manual to comply with Architect's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's comments and prior to commencing demonstration and training.
PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

A. Directory: Prepare a single, comprehensive directory of emergency, operation, and maintenance data and materials, listing items and their location to facilitate ready access to desired information. Include a section in the directory for each of the following:
 1. List of documents.
 2. List of systems.
 3. List of equipment.
 4. Table of contents.

B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.

C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.

D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.

E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 REQUIREMENTS FOR EMERGENCY, OPERATION, AND MAINTENANCE MANUALS

A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 1. Title page.
 2. Table of contents.

B. Title Page: Include the following information:
 1. Subject matter included in manual.
 2. Name and address of Project.
 3. Name and address of Owner.
 4. Date of submittal.
 5. Name and contact information for Contractor.
 6. Name and contact information for Construction Manager.
 7. Name and contact information for Architect.
 8. Cross-reference to related systems in other operation and maintenance manuals.

C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.

E. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic PDF file for each manual type required.
 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
2. File Names and Bookmarks: Enable bookmarking of individual documents based on file names. Name document files to correspond to system, subsystem, and equipment names used in manual directory and table of contents. Group documents for each system and subsystem into individual composite bookmarked files, then create composite manual, so that resulting bookmarks reflect the system, subsystem, and equipment names in a readily navigated file tree. Configure electronic manual to display bookmark panel on opening file.

F. Manuals, Paper Copy: Submit manuals in the form of hard copy, bound and labeled volumes.
 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents, and indicate Specification Section number on bottom of spine. Indicate volume number for multiple-volume sets.
 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.
 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 EMERGENCY MANUALS

A. Content: Organize manual into a separate section for each of the following:
 1. Type of emergency.
 2. Emergency instructions.
 3. Emergency procedures.

B. Type of Emergency: Where applicable for each type of emergency indicated below, include instructions and procedures for each system, subsystem, piece of equipment, and component:
 1. Fire.
 2. Flood.
 5. Power failure.
 7. System, subsystem, or equipment failure.
 8. Chemical release or spill.
C. Emergency Instructions: Describe and explain warnings, trouble indications, error messages, and similar codes and signals. Include responsibilities of Owner’s operating personnel for notification of Installer, supplier, and manufacturer to maintain warranties.

D. Emergency Procedures: Include the following, as applicable:
1. Instructions on stopping.
2. Shutdown instructions for each type of emergency.
3. Operating instructions for conditions outside normal operating limits.
4. Required sequences for electric or electronic systems.
5. Special operating instructions and procedures.

2.4 OPERATION MANUALS

A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
2. Performance and design criteria if Contractor has delegated design responsibility.
3. Operating standards.
4. Operating procedures.
5. Operating logs.
6. Wiring diagrams.
7. Control diagrams.
8. Piped system diagrams.
9. Precautions against improper use.
10. License requirements including inspection and renewal dates.

B. Descriptions: Include the following:
1. Product name and model number. Use designations for products indicated on Contract Documents.
2. Manufacturer's name.
3. Equipment identification with serial number of each component.
4. Equipment function.
5. Operating characteristics.
6. Limiting conditions.
7. Performance curves.
8. Engineering data and tests.
9. Complete nomenclature and number of replacement parts.

C. Operating Procedures: Include the following, as applicable:
1. Startup procedures.
2. Equipment or system break-in procedures.
3. Routine and normal operating instructions.
4. Regulation and control procedures.
5. Instructions on stopping.
7. Seasonal and weekend operating instructions.
8. Required sequences for electric or electronic systems.
9. Special operating instructions and procedures.

D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.

E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.
2.5 PRODUCT MAINTENANCE MANUALS

A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.

B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Product Information: Include the following, as applicable:
 1. Product name and model number.
 2. Manufacturer's name.
 3. Color, pattern, and texture.
 5. Reordering information for specially manufactured products.

D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 1. Inspection procedures.
 2. Types of cleaning agents to be used and methods of cleaning.
 3. List of cleaning agents and methods of cleaning detrimental to product.
 4. Schedule for routine cleaning and maintenance.
 5. Repair instructions.

E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.

F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.

2.6 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.

B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.

C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 1. Standard maintenance instructions and bulletins.
 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 3. Identification and nomenclature of parts and components.
 4. List of items recommended to be stocked as spare parts.

D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 1. Test and inspection instructions.
 2. Troubleshooting guide.
3. Precautions against improper maintenance.
4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
5. Aligning, adjusting, and checking instructions.
6. Demonstration and training video recording, if available.

E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.

F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.

G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.

H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.

B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.

C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
F. **Drawings:** Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.

1. Do not use original project record documents as part of operation and maintenance manuals.
2. Comply with requirements of newly prepared record Drawings in Section 017839 "Project Record Documents."

G. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION
SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes administrative and procedural requirements for project record documents, including the following:
 1. Record Drawings.
 2. Record Specifications.
 3. Record Product Data.
 4. Miscellaneous record submittals.

 B. Related Requirements:
 1. Section 017300 "Execution" for final property survey.
 2. Section 017700 "Closeout Procedures" for general closeout procedures.
 3. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 CLOSEOUT SUBMITTALS
 A. Record Drawings: Comply with the following:
 1. Number of Copies: Submit one set(s) of marked-up record prints.
 2. Number of Copies: Submit copies of record Drawings as follows:
 a. Initial Submittal:
 1) Submit PDF electronic files of scanned record prints and one of file prints.
 2) Architect will indicate whether general scope of changes, additional information recorded, and quality of drafting are acceptable.
 b. Final Submittal:
 1) Submit PDF electronic files of scanned record prints and three set(s) of prints.

 B. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS
 A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 b. Accurately record information in an acceptable drawing technique.
 c. Record data as soon as possible after obtaining it.
 d. Record and check the markup before enclosing concealed installations.
 e. Cross-reference record prints to corresponding archive photographic documentation.
 2. Content: Types of items requiring marking include, but are not limited to, the following:
a. Dimensional changes to Drawings.
b. Revisions to details shown on Drawings.
c. Depths of foundations below first floor.
d. Locations and depths of underground utilities.
e. Revisions to routing of piping and conduits.
f. Revisions to electrical circuitry.
g. Actual equipment locations.
h. Duct size and routing.
i. Locations of concealed internal utilities.
j. Changes made by Change Order or Construction Change Directive.
k. Changes made following Architect's written orders.
l. Details not on the original Contract Drawings.
m. Field records for variable and concealed conditions.
n. Record information on the Work that is shown only schematically.

3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

5. Mark important additional information that was either shown schematically or omitted from original Drawings.

6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect and Construction Manager. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:

1. Format: Same digital data software program, version, and operating system as the original Contract Drawings.
2. Format: DXF DGN, Version , Microsoft Windows operating system.
3. Format: Annotated PDF electronic file with comment function enabled.
4. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
5. Refer instances of uncertainty to Architect through Construction Manager for resolution.

a. See Section 013300 "Submittal Procedures" for requirements related to use of Architect's digital data files.

b. Architect will provide data file layer information. Record markups in separate layers.

C. Newly Prepared Record Drawings: Prepare new Drawings instead of preparing record Drawings where Architect determines that neither the original Contract Drawings nor Shop Drawings are suitable to show actual installation.

1. New Drawings may be required when a Change Order is issued as a result of accepting an alternate, substitution, or other modification.

2. Consult Architect and Construction Manager for proper scale and scope of detailing and notations required to record the actual physical installation and its relation to other construction. Integrate newly prepared record Drawings into record Drawing sets; comply with procedures for formatting, organizing, copying, binding, and submitting.

D. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
2. Format: Annotated PDF electronic file with comment function enabled.

3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.

4. Identification: As follows:
 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect and Construction Manager.
 e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 4. For each principal product, indicate whether record Product Data has been submitted in operation and maintenance manuals instead of submitted as record Product Data.
 5. Note related Change Orders, record Product Data, and record Drawings where applicable.

B. Format: Submit record Specifications as annotated PDF electronic file paper copy scanned PDF electronic file(s) of marked-up paper copy of Specifications.

2.3 RECORD PRODUCT DATA

A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 3. Note related Change Orders, record Specifications, and record Drawings where applicable.

B. Format: Submit record Product Data as annotated PDF electronic file paper copy scanned PDF electronic file(s) of marked-up paper copy of Product Data.
 1. Include record Product Data directory organized by Specification Section number and title, electronically linked to each item of record Product Data.

2.4 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

B. Format: Submit miscellaneous record submittals as PDF electronic file paper copy scanned PDF electronic file(s) of marked-up miscellaneous record submittals.
 1. Include miscellaneous record submittals directory organized by Specification Section number and title, electronically linked to each item of miscellaneous record submittals.
PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.

B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's and Construction Manager's reference during normal working hours.

END OF SECTION
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

ABS: Acrylonitrile-butadiene-styrene plastic.

1.3 COORDINATION

Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 INSTALLATION

Equipment Mounting:
Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

1. Comply with requirements for vibration isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."

B. Assemble open drain fittings and install with top of hub [1 inch] [2 inches] above floor.

C. Install wood-blocking reinforcement for wall-mounting-type specialties.

D. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

A. Install piping adjacent to equipment to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."
SECTION 024119 - SELECTIVE STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Demolition and removal of selected portions of building or structure.
 2. Salvage of existing items to be reused or recycled.
B. Related Requirements:
 1. Section 017300 "Execution" for cutting and patching procedures.

1.3 DEFINITIONS
A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and reinstalled.
B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.
C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP
A. Unless otherwise indicated, demolition waste becomes property of Contractor.
B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.5 PREINSTALLATION MEETINGS
A. Predemolition Conference: Conduct conference at Project site.
 1. Inspect and discuss condition of construction to be selectively demolished.
 2. Review structural load limitations of existing structure.
 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
 5. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS
A. Proposed Protection Measures: Submit report, including drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control, for noise control. Indicate proposed locations and construction of barriers.
B. Schedule of Selective Demolition Activities: Indicate the following:
1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's building manager's and other tenants' on-site operations are uninterrupted.

2. Interruption of utility services. Indicate how long utility services will be interrupted.

3. Coordination for shutoff, capping, and continuation of utility services.

4. Use of elevator and stairs.

5. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.

C. Inventory: Submit a list of items to be removed and salvaged and deliver to Owner prior to start of demolition.

D. Predemolition Photographs or Video: Submit before Work begins.

E. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

F. Warranties: Documentation indicated that existing warranties are still in effect after completion of selective demolition.

1.7 CLOSEOUT SUBMITTALS

A. Inventory: Submit a list of items that have been removed and salvaged.

B. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.

1.8 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.9 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

1. Before selective demolition, Owner will remove the following items:
 a. Furniture
 b. Loose items and equipment
 c. Simple wall mounted items including artwork and signage.

C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.

1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

E. Storage or sale of removed items or materials on-site is not permitted.

F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

1. Maintain fire-protection facilities in service during selective demolition operations.
1.10 WARRANTY
A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties. Notify warrantor before proceeding.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
B. Review record documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in record documents.
C. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS
A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 2. Arrange to shut off indicated utilities with utility companies.
 3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 c. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
C. Refrigerant: Remove refrigerant from mechanical equipment to be selectively demolished according to 40 CFR 82 and regulations of authorities having jurisdiction.
3.3 PREPARATION

A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
 4. Cover and protect furniture, furnishings, and equipment that have not been removed.

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 1. Strengthen or add new supports when required during progress of selective demolition.

3.4 SELECTIVE DEMOLITION, GENERAL

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 1. Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.
 2. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.
 5. Maintain adequate ventilation when using cutting torches.
 6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
 8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 9. Dispose of demolished items and materials promptly.

B. Removed and Salvaged Items:
 1. Clean salvaged items.
 2. Store items in a secure area until delivery to Owner.

C. Removed and Reinstalled Items:
1. Clean and repair items to functional condition adequate for intended reuse.
2. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition[and cleaned] and reinstalled in their original locations after selective demolition operations are complete.

3.5 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in small sections. Using power-driven saw, cut concrete to a depth of at least 3/4 inch at junctures with construction to remain. Dislodge concrete from reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete. Neatly trim openings to dimensions indicated.

B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.

C. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

D. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCT's "Recommended Work Practices for the Removal of Resilient Floor Coverings." Do not use methods requiring solvent-based adhesive strippers.

3.6 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Except for items or materials indicated to be[recycled,] reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 1. Do not allow demolished materials to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.7 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION
SECTION 033053 - MISCELLANEOUS CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cast-in-place concrete, including reinforcement, concrete materials, mixture design, placement procedures, and finishes.

1.3 ACTION SUBMITTALS

A. Design Mixtures: For each concrete mixture.

1.4 QUALITY ASSURANCE

A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. Comply with the following sections of ACI 301 unless modified by requirements in the Contract Documents:
 1. "General Requirements."
 2. "Reinforcement and Reinforcement Supports."
 3. "Concrete Mixtures."
 4. "Handling, Placing, and Constructing."

B. Comply with ACI 117.

2.2 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

B. Plain-Steel Wire: ASTM A 1064/A 1064M, as drawn.

C. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from as-drawn steel wire into flat sheets.

2.3 CONCRETE MATERIALS

A. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

B. Cementitious Materials:
 1. Portland Cement: ASTM C 150/C 150M, Type I Type II.
 2. Fly Ash: ASTM C 618, Class C or F.
 3. Slag Cement: ASTM C 989/C 989M, Grade 100 or 120.
D. Air-Entraining Admixture: ASTM C 260/C 260M.
E. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
F. Water: ASTM C 94/C 94M.

2.4 RELATED MATERIALS
A. Vapor Retarder: Plastic sheet, ASTM E 1745, Class A or B.
B. Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 10 mils thick; or plastic sheet, ASTM E 1745, Class C.
C. Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber, or ASTM D 1752, cork or self-expanding cork.

2.5 CURING MATERIALS
A. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete.
B. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth or cotton mats.
C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
D. Water: Potable.
E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.
F. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
 1. VOC Content: 200 g/L or less.

2.6 CONCRETE MIXTURES
A. Comply with ACI 301.
B. Normal-Weight Concrete:
 1. Minimum Compressive Strength: 4000 psi at 28 days.
 2. Maximum W/C Ratio: 0.50.
 3. Cementitious Materials: Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
 4. Slump Limit: 4 inches, plus or minus 1 inch.
 5. Air Content: Maintain within range permitted by ACI 301. Do not allow air content of trowel-finished floor slabs to exceed 3 percent.

2.7 CONCRETE MIXING
A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M[and ASTM C 1116/C 1116], and furnish batch ticket information.
 1. When air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.
B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 1. For mixer capacity of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 2. For mixer capacity larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mix type, mix time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.1 EMBEDDED ITEM INSTALLATION
 A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.2 VAPOR-RETARDER INSTALLATION
 A. Install, protect, and repair vapor retarders according to ASTM E 1643; place sheets in position with longest dimension parallel with direction of pour.
 1. Lap joints 6 inches and seal with manufacturer's recommended adhesive or joint tape.

3.3 STEEL REINFORCEMENT INSTALLATION
 A. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.4 JOINTS
 A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
 B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least [one-fourth] <Insert depth> of concrete thickness, as follows:
 1. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.

3.5 CONCRETE PLACEMENT
 A. Comply with ACI 301 for placing concrete.
 B. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 C. Do not add water to concrete during delivery, at Project site, or during placement.
 D. Consolidate concrete with mechanical vibrating equipment according to ACI 301.
3.6 FINISHING UNFORMED SURFACES

A. General: Comply with ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Screed surfaces with a straightedge and strike off. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane before excess moisture or bleedwater appears on surface.
 1. Do not further disturb surfaces before starting finishing operations.

C. Float Finish: Apply float finish to surfaces indicated, to surfaces to receive trowel finish, and to floor and slab surfaces to be covered with fluid-applied or sheet waterproofing, fluid-applied or direct-to-deck-applied membrane roofing, or sand-bed terrazzo.

D. Trowel Finish: Apply a hard trowel finish to surfaces indicated and to floor and slab surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin film-finish coating system.

3.7 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and with ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

D. Curing Methods: Cure formed and unformed concrete for at least seven days by one or a combination of the following methods:
 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests: Perform according to ACI 301.
1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.

2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.

END OF SECTION
SECTION 042200 - CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Concrete masonry units.
 2. Mortar and grout.

1.3 DEFINITIONS
 A. CMU(s): Concrete masonry unit(s).

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For the following:
 1. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315.

1.5 INFORMATIONAL SUBMITTALS
 A. Mix Designs: For each type of mortar. Include description of type and proportions of ingredients.
 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91/C 91M for air content.
 2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

1.6 QUALITY ASSURANCE
 A. Provide the following upon request:
 1. Material Certificates: For each type and size of the following:
 a. Masonry units.
 1) Include data on material properties material test reports substantiating compliance with requirements.
 2) For masonry units, include data and calculations establishing average net-area compressive strength of units.
 b. Cementitious materials. Include name of manufacturer, brand name, and type.
 c. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
 d. Grout mixes. Include description of type and proportions of ingredients.
 e. Reinforcing bars.
 f. Joint reinforcement.
 g. Anchors, ties, and metal accessories.
1.7 DELIVERY, STORAGE, AND HANDLING
A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.
B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.
C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.
E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.8 FIELD CONDITIONS
A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.
 1. Extend cover a minimum of 24 inches down both sides of walls, and hold cover securely in place.
B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.
C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.
 1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
 2. Protect sills, ledges, and projections from mortar droppings.
 3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
 4. Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.
B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.2 UNIT MASONRY, GENERAL
A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6 except as modified by requirements in the Contract Documents.
B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work and will be within 20 feet vertically and horizontally of a walking surface.
C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.
 1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.3 CONCRETE MASONRY UNITS
A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.
 1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
 2. Provide bullnose units for outside corners unless otherwise indicated.
 3. Provide glazed cmu units to match existing units in color & finish in basement area. Submit samples to verify match to Architect for final approval. (Contractor option is to salvage existing units from removed wall as needed for patching and finishing opening into the existing glazed cmu wall.)

B. CMUs: ASTM C 90.
 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 3050 psi.
 2. Density Classification: Normal weight.

2.4 CONCRETE LINTELS
A. General: Provide one of the following:
 B. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.
 C. Concrete Lintels: Precast or formed-in-place concrete lintels complying with requirements in Section 033000 "Cast-in-Place Concrete," and with reinforcing bars indicated.

2.5 MORTAR AND GROUT MATERIALS
A. Portland Cement: ASTM C 150/C 150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
 B. Hydrated Lime: ASTM C 207, Type S.
 C. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.
 D. Mortar Cement: ASTM C 1329/C 1329M.
 1. Products: Subject to compliance with requirements, provide the following:
 E. Aggregate for Mortar: ASTM C 144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4 inch thick, use aggregate graded with 100 percent passing the No. 16 sieve.
 F. Aggregate for Grout: ASTM C 404.
 G. Water: Potable.

2.6 REINFORCEMENT
A. Uncoated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.
B. Masonry-Joint Reinforcement, General: Ladder type complying with ASTM A 951/A 951M.
 1. Interior Walls: Mill- galvanized carbon steel.
 2. Wire Size for Side Rods: 0.148-inch diameter.
 4. Spacing of Cross Rods: Not more than 16 inches o.c.
 5. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.

2.7 TIES AND ANCHORS

A. General: Ties and anchors shall extend at least 1-1/2 inches into masonry but with at least a 5/8-inch cover on outside face.

B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:
 3. Stainless-Steel Wire: ASTM A 580/A 580M, [Type 304] [Type 316].

2.8 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from [neoprene] [urethane] [or] [PVC].

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D 226/D 226M, Type I (No. 15 asphalt felt).

2.9 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 1. Do not use calcium chloride in mortar or grout.
 2. Use mortar cement mortar unless otherwise indicated.

B. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specification. Provide the following types of mortar for applications stated unless another type is indicated or needed to provide required compressive strength of masonry.
 1. For interior nonload-bearing partitions, Type O may be used instead of Type N.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
 2. Verify that foundations are within tolerances specified.
 3. Verify that substrates are free of substances that would impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL
A. Build chases and recesses to accommodate items specified in this and other Sections.
B. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.
C. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

3.3 TOLERANCES
A. Dimensions and Locations of Elements:
1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch or minus 1/4 inch.
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch.
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:
1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2-inch maximum.
5. For lines and surfaces, do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2-inch maximum.
6. For vertical alignment of exposed head joints, do not vary from plumb by more than 1/4 inch in 10 feet, or 1/2-inch maximum.
7. For faces of adjacent exposed masonry units, do not vary from flush alignment by more than 1/16 inch.

C. Joints:
1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch.
3. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
4. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch.

3.4 LAYING MASONRY WALLS
A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

C. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than [2 inches] [4 inches]. Bond and interlock each course of each wythe at corners. Do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.

D. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

E. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

F. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

G. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

H. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
 1. Wedge nonload-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.
 2. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 07841.43 "Penetration Firestopping."

3.5 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:
 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.

B. Rake out mortar joints at pre-faced CMUs to a uniform depth of 1/4 inch and point with epoxy mortar to comply with epoxy-mortar manufacturer's written instructions.

C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

E. Cut joints flush where indicated to receive waterproofing unless otherwise indicated.

3.6 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.
 1. Space reinforcement not more than 16 inches o.c.
 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.
 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings [in addition to continuous reinforcement].

3.7 LINTELS

A. Provide concrete lintels where shown and where openings of more than 12 inches for brick-size units and 24 inches for block-size units are shown without structural steel or other supporting lintels.
B. Provide minimum bearing of 8 inches at each jamb unless otherwise indicated.

3.8 REPAIRING, POINTING, AND CLEANING

A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.

B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.

C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before toothing joints.

D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
 4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
 5. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.9 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

B. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 1. Crush masonry waste to less than 4 inches in each dimension.

C. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.

D. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Wood blocking and nailers.
2. Utility shelving.
3. Plywood backing panels.

1.3 DEFINITIONS
A. Dimension Lumber: Lumber of 2 inches nominal or greater but less than 5 inches nominal in least dimension.
B. Lumber grading agencies, and the abbreviations used to reference them, include the following:

1.4 QUALITY ASSURANCE
A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL
A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece.
3. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber.
4. Provide dressed lumber, S4S, unless otherwise indicated.
B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with the ground, Use Category UC3 for exterior construction not in contact with the ground, and Use Category UC4 for items in contact with the ground.

B. Application: Treat items indicated on Drawings, and the following:

1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
2. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
3. Wood framing members that are less than 18 inches above the ground in crawl spaces or excavated areas.
4. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

1. Use treatment that does not promote corrosion of metal fasteners.
2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use where exterior type is not indicated.

C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Kiln-dry plywood after treatment to a maximum moisture content of 15 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of testing and inspecting agency acceptable to authorities having jurisdiction.

E. Application: Treat items indicated on Drawings, and the following:

1. Concealed blocking.

2.4 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:

1. Blocking.
2. Nailers.
3. Furring.

B. For items of dimension lumber size, provide Construction or No. 2 grade lumber of any species. and any of the following species:

1. Hem-fir (north); NLGA.
2. Mixed southern pine; SPIB.
3. Spruce-pine-fir; NLGA.
4. Hem-fir; WCLIB or WWPA.
5. Spruce-pine-fir (south); NeLMA, WCLIB, or WWPA.

C. For utility shelving, provide lumber with 19 percent maximum moisture content and [any of] the following species and grades:
 1. Mixed southern pine, No. 1 grade; SPIB.

D. For concealed boards, provide lumber with 19 percent maximum moisture content and [any of] the following species and grades:
 1. Mixed southern pine, No. 2 grade; SPIB.
 2. Hem-fir or hem-fir (north), Construction or No. 2 Common grade; NLGA, WCLIB, or WWPA.
 3. Spruce-pine-fir (south) or spruce-pine-fir, Construction or No. 2 Common grade; NeLMA, NLGA, WCLIB, or WWPA.

E. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

2.5 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M [of Type 304 stainless steel].

B. Nails, Brads, and Staples: ASTM F 1667.

D. Wood Screws: ASME B18.6.1.

E. Screws for Fastening to Metal Framing: ASTM C 1002 ASTM C 954, length as recommended by screw manufacturer for material being fastened.

F. Lag Bolts: ASME B18.2.1.

G. Bolts: Steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers.

H. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to 6 times the load imposed when installed in unit masonry assemblies and equal to 4 times the load imposed when installed in concrete as determined by testing per ASTM E 488 conducted by a qualified independent testing and inspecting agency.

2.6 METAL FRAMING ANCHORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 1. Cleveland Steel Specialty Co.
 2. KC Metals Products, Inc.
 3. Phoenix Metal Products, Inc.
 4. Simpson Strong-Tie Co., Inc.
 5. USP Structural Connectors.

1. Use for interior locations unless otherwise indicated.

D. Hot-Dip Heavy-Galvanized Steel Sheet: ASTM A 653/A 653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.

1. Use for wood-preservation-treated lumber and where indicated.

2.7 MISCELLANEOUS MATERIALS

A. Adhesives for Gluing Furring to Concrete or Masonry: Formulation complying with ASTM D 3498 that is approved for use indicated by adhesive manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Where wood-preservation-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

B. Do not splice structural members between supports unless otherwise indicated.

C. Sort and select lumber so that natural characteristics will not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

D. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 2. Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.

E. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 PROTECTION

A. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION
SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Glass-fiber blanket insulation.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE
A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials to the Project site in their original containers or packages or bundles bearing label clearly identifying manufacturer's name, brand, grade, UL listing, and other pertinent information.
B. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
C. Protect foam-plastic board insulation as follows:
 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site before installation time.
 3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 GLASS-FIBER BLANKET INSULATION
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CertainTeed Corporation.
 2. Guardian Building Products, Inc.
 5. Owens Corning.
B. [FG-8: Unfaced, Glass-Fiber Blanket Insulation: ASTM C 665, Type I; thickness as indicated with width and length as required to suit job conditions; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.]
2.2 MINERAL-WOOL BLANKET INSULATION

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fibrex Insulations Inc.
 2. Owens Corning.
 3. Roxul Inc.
 4. Thermafiber.

B. [MW-3:] Unfaced, Mineral-Wool Blanket Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers; thickness as indicated with width and length as required to suit job conditions; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.
 1. Minimum density of 0.6 lbs. per cubic foot.
 2. Minimum thermal resistivity (R) of 3.1 deg F x h x sq. ft./Btu x in. at mean temperature of 75 degrees F.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

A. Comply with insulation manufacturer's written instructions applicable to products and applications indicated.

B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.

C. Extend insulation to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

D. Provide sizes to fit applications indicated and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness.

3.3 INSTALLATION OF INSULATION FOR FRAMED CONSTRUCTION

A. Apply insulation units to substrates by method indicated, complying with manufacturer's written instructions. If no specific method is indicated, bond units to substrate with adhesive or use mechanical anchorage to provide permanent placement and support of units.

B. Glass-Fiber or Mineral-Wool Blanket Insulation: Install in cavities formed by framing members according to the following requirements:
 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members and/or building construction with no gaps or voids.
 3. Secure insulation blankets to framing members with fasteners as recommended by the insulation manufacturer.
 4. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
 5. For metal-framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.
a. Provide galvanized metal furring or metal bands or wire lacing as required to hold insulation blankets in place without sagging.

3.4 MISCELLANEOUS voids

A. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials, matching adjacent insulation type where possible:
 1. Unfaced glass-fiber blanket insulation. ASTM C 665, Type I; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.
 2. Unfaced mineral-wool blanket insulation. ASTM C 665, Type I; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.
 3. Glass-Fiber Loose-Fill Insulation: ASTM C 764, Type II; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E 84. Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft.

3.5 INSTALLATION OF INSULATION IN CEILINGS FOR SOUND ATTENUATION

A. Where glass-fiber blankets are indicated for sound attenuation above ceilings, install blanket insulation over entire ceiling area in thicknesses indicated. Extend insulation 48 inches up either side of partitions.

3.6 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION
SECTION 078413 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Penetrations in fire-resistance-rated walls.
 2. Penetrations in horizontal assemblies.
 3. Penetrations in smoke barriers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Product Schedule: For each penetration firestopping system. Include location and design designation of qualified testing and inspecting agency.
 1. Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping condition, submit illustration, with modifications marked, approved by penetration firestopping manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements," and that is experienced in installing penetration firestopping similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful performance. Qualifications include having the necessary experience, staff, and training to install manufacturer's products per specified requirements. Manufacturer's willingness to sell its penetration firestopping products to Contractor or to Installer engaged by Contractor does not in itself confer qualification on buyer.
B. Installation Responsibility: Assign installation of penetration firestopping and fire-resistive joint systems to a single qualified firestop contractor.
C. Source Limitations: Obtain fire-resistive joint systems for each kind of joint and construction condition indicated, and penetration firestopping, through one source from a single manufacturer.
D. Fire-Test-Response Characteristics: Penetration firestopping shall comply with the following requirements:
 1. Penetration firestopping tests are performed by a qualified testing agency acceptable to authorities having jurisdiction.
 2. Penetration firestopping is identical to those tested per testing standard referenced in "Penetration Firestopping" Article. Provide rated systems complying with the following requirements:
 a. Penetration firestopping products bear classification marking of qualified testing and inspecting agency.
b. Classification markings on penetration firestopping correspond to designations listed by one of the following, as acceptable to authorities having jurisdiction:

1) UL in its "Fire Resistance Directory."
2) Intertek ETL SEMKO in its "Directory of Listed Building Products."
3) FM Global in its "Building Materials Approval Guide."

E. Preinstallation Conference: Conduct conference at Project site.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: Do not install penetration firestopping when ambient or substrate temperatures are outside limits permitted by penetration firestopping manufacturers or when substrates are wet because of rain, frost, condensation, or other causes.

B. Install and cure penetration firestopping per manufacturer's written instructions using natural means of ventilations or, where this is inadequate, forced-air circulation.

1.6 COORDINATION

A. Coordinate construction of openings and penetrating items to ensure that penetration firestopping is installed according to specified requirements.

B. Coordinate sizing of sleeves, openings, core-drilled holes, or cut openings to accommodate penetration firestopping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hilti, Inc.
 2. Specified Technologies Inc.
 3. 3M Fire Protection Products.

2.2 PENETRATION FIRESTOPPING

A. Provide penetration firestopping that is produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

B. Penetrations in Fire-Resistance-Rated Walls: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. Fire-resistance-rated walls include fire-barrier walls smoke-barrier walls and fire partitions.
 2. F-Rating: Not less than the fire-resistance rating of constructions penetrated.

C. Penetrations in Horizontal Assemblies: Provide penetration firestopping with ratings determined per ASTM E 814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.
 1. Horizontal assemblies include floors floor/ceiling assemblies.
 2. F-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated.
 3. T-Rating: At least 1 hour, but not less than the fire-resistance rating of constructions penetrated except for floor penetrations within the cavity of a wall.

D. Penetrations in Smoke Barriers: Provide penetration firestopping with ratings determined per UL 1479.
E. W-Rating: Provide penetration firestopping showing no evidence of water leakage when tested according to UL 1479.

F. Exposed Penetration Firestopping: Provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

G. Accessories: Provide components for each penetration firestopping system that are needed to install fill materials and to maintain ratings required. Use only those components specified by penetration firestopping manufacturer and approved by qualified testing and inspecting agency for firestopping indicated.

1. Permanent forming/damming/backing materials, including the following:
 a. Slag-wool-fiber or rock-wool-fiber insulation.
 b. Sealants used in combination with other forming/damming/backing materials to prevent leakage of fill materials in liquid state.
 c. Fillers for sealants.

2. Temporary forming materials.

5. Steel sleeves.

2.3 FILL MATERIALS

A. Cast-in-Place Firestop Devices: Factory-assembled devices for use in cast-in-place concrete floors and consisting of an outer metallic sleeve lined with an intumescent strip, a radial extended flange attached to one end of the sleeve for fastening to concrete formwork, and a neoprene gasket.

B. Latex Sealants: Single-component latex formulations that do not re-emulsify after cure during exposure to moisture.

C. Firestop Devices: Factory-assembled collars formed from galvanized steel and lined with intumescent material sized to fit specific diameter of penetrant.

D. Mortars: Prepackaged dry mixes consisting of a blend of inorganic binders, hydraulic cement, fillers, and lightweight aggregate formulated for mixing with water at Project site to form a nonshrinking, homogeneous mortar.

E. Pillows/Bags: Reusable heat-expanding pillows/bags consisting of glass-fiber cloth cases filled with a combination of mineral-fiber, water-insoluble expansion agents, and fire-retardant additives. Where exposed, cover openings with steel-reinforcing wire mesh to protect pillows/bags from being easily removed.

F. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

G. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below:

 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces, and nonsag formulation for openings in vertical and sloped surfaces, unless indicated firestopping limits use of nonsag grade for both opening conditions.

2.4 MIXING

A. For those products requiring mixing before application, comply with penetration firestopping manufacturer's written instructions for accurate proportioning of materials, water (if required), type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other items or procedures needed to produce products of uniform quality with optimum performance characteristics for application indicated.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions, with Installer present, for compliance with requirements for opening configurations, penetrating items, substrates, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Cleaning: Clean out openings immediately before installing penetration firestopping to comply with manufacturer's written instructions and with the following requirements:
 1. Remove from surfaces of opening substrates and from penetrating items foreign materials that could interfere with adhesion of penetration firestopping.
 2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping. Remove loose particles remaining from cleaning operation.
 3. Remove laitance and form-release agents from concrete.
B. Priming: Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
C. Masking Tape: Use masking tape to prevent penetration firestopping from contacting adjoining surfaces that will remain exposed on completion of the Work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove stains. Remove tape as soon as possible without disturbing firestopping's seal with substrates.

3.3 INSTALLATION
A. General: Install penetration firestopping to comply with manufacturer's written installation instructions and published drawings for products and applications indicated.
B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.
 1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestopping.
C. Install fill materials for firestopping by proven techniques to produce the following results:
 1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
 2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
 3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION
A. Identify penetration firestopping with preprinted metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of firestopping edge so labels will be visible to anyone seeking to remove penetrating items or firestopping. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:
1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 CLEANING AND PROTECTION

A. Clean off excess fill materials adjacent to openings as the Work progresses by methods and with cleaning materials that are approved in writing by penetration firestopping manufacturers and that do not damage materials in which openings occur.

B. Provide final protection and maintain conditions during and after installation that ensure that penetration firestopping is without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, immediately cut out and remove damaged or deteriorated penetration firestopping and install new materials to produce systems complying with specified requirements.

END OF SECTION
SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Silicone joint sealants.
2. Urethane joint sealants.
3. Latex joint sealants.

B. Related Sections:
1. Section 042000 "Unit Masonry" for masonry control and expansion joint fillers and gaskets.
2. Section 092900 "Gypsum Board" for sealing perimeter joints.

1.3 ACTION SUBMITTALS
A. Submittal Compliance Form: If Basis-of-Design products are provided, Submittal Compliance Form may be submitted in lieu of required Product Data submittal Samples submittal. Ensure compliance with requirements included in Section 013300 "Submittal Procedures."

B. Product Data: For each joint-sealant product indicated.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Source Limitations: Obtain each kind of joint sealant from single source from single manufacturer.

1.5 PROJECT CONDITIONS
A. Do not proceed with installation of joint sealants under the following conditions:
1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.6 WARRANTY
A. Special Installer's Warranty: Manufacturer's standard form in which Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
1. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

B. Liquid-Applied Joint Sealants: Comply with ASTM C 920 and other requirements indicated for each liquid-applied joint sealant specified, including those referencing ASTM C 920 classifications for type, grade, class, and uses related to exposure and joint substrates.
 1. Suitability for Immersion in Liquids. Where sealants are indicated for Use I for joints that will be continuously immersed in liquids, provide products that have undergone testing according to ASTM C 1247. Liquid used for testing sealants is deionized water, unless otherwise indicated.

C. Stain-Test-Response Characteristics: Where sealants are specified to be nonstaining to porous substrates, provide products that have undergone testing according to ASTM C 1248 and have not stained porous joint substrates indicated for Project.

D. Suitability for Contact with Food: Where sealants are indicated for joints that will come in repeated contact with food, provide products that comply with 21 CFR 177.2600.

E. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer’s full range.

2.2 SILICONE JOINT SEALANTS

A. Sealant JS-S1 - Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 50, for Use NT.
 1. Products: Subject to compliance with requirements, provide products from the following table that has a validation certificate from the Sealant, Waterproofing and Restoration Institute (SWRI).

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Manufacturer Rated Movement Capability (CLASS)</th>
<th>Substrate Primer Required: Yes/No/Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Corning</td>
<td>791</td>
<td>± 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Dow Corning</td>
<td>795</td>
<td>± 50%</td>
<td>No Yes No Test</td>
</tr>
<tr>
<td>Dow Corning</td>
<td>756 SMS</td>
<td>± 50%</td>
<td>No Yes No Test</td>
</tr>
<tr>
<td>May National Associates, Inc.</td>
<td>Bondaflex Sil 295</td>
<td>± 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Momentive Performance Materials, Inc.</td>
<td>Silpruf SCS2000</td>
<td>± 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Momentive Performance Materials, Inc.</td>
<td>Silpruf NB SCS 9000</td>
<td>± 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Pecora Corporation</td>
<td>864</td>
<td>± 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Pecora Corporation</td>
<td>895</td>
<td>± 50%</td>
<td>Yes Test No Test</td>
</tr>
</tbody>
</table>
Substrate Primer Required: Yes/No/Test

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Manufacturer Rated Movement Capability (CLASS)</th>
<th>Substrate Primer Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mortar</td>
<td>Anod.</td>
</tr>
<tr>
<td>Tremco Incorporated</td>
<td>Spectrum 3</td>
<td>± 50%</td>
<td>Yes</td>
</tr>
<tr>
<td>Tremco Incorporated</td>
<td>Spectrum 4-TS</td>
<td>± 50%</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table Notes:
* Indicates substrates with a cement component, such as concrete, that require use of a primer.
** Indicates that other substrates shall be tested for adhesion to determine if a primer will be required.

B. Sealant JS-S2 - Single-Component, Nonsag, Neutral-Curing Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 100/50, for Use NT.
1. Products: Subject to compliance with requirements, provide products from the following table that has a validation certificate from the Sealant, Waterproofing and Restoration Institute (SWRI).

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Manufacturer Rated Movement Capability (CLASS)</th>
<th>Substrate Primer Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Corning</td>
<td>790</td>
<td>+ 100/- 50%</td>
<td>No</td>
</tr>
<tr>
<td>May National Associates, Inc.</td>
<td>Bondaflex Sil 290</td>
<td>+ 100/- 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Momentive Performance Materials, Inc.</td>
<td>Silpruf LM SCS2700</td>
<td>+ 100/- 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Pecora Corporation</td>
<td>890</td>
<td>+ 100/- 50%</td>
<td>Yes Test No Test</td>
</tr>
<tr>
<td>Tremco Incorporated</td>
<td>Spectrum 1</td>
<td>+ 100/- 50%</td>
<td>Yes Test No Test</td>
</tr>
</tbody>
</table>

Table Notes:
* Indicates substrates with a cement component, such as concrete, that require use of a primer.
** Indicates that other substrates shall be tested for adhesion to determine if a primer will be required.

2.3 LATEX JOINT SEALANTS

A. Sealant JS-L1 - Latex Joint Sealant: Acrylic latex or siliconized acrylic latex, ASTM C 834.
1. Products: Subject to compliance with requirements, provide one of the following:
a. BASF Building Systems; Sonolac.
c. DAP Products Inc.; ALEX Ultra 230.
d. May National Associates, Inc.; [Bondaflex 600] [Bondaflex Sil-A 700].
e. Pecora Corporation; AC-20 + Silicone.
f. Protective Treatments Inc.; 738.
2.4 **MILDEW-RESISTANT JOINT SEALANTS**

A. Sealant JS-M1 - Mildew-Resistant, Single-Component, Silicone Joint Sealant: ASTM C 920, Type S, Grade NS, Class 25, for Use NT.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. BASF Building Systems; Omniplus.
 b. Dow Corning Corporation; 786 Mildew Resistant.
 c. GE Advanced Materials - Silicones; Sanitary SCS 1700.
 d. Pecora Corporation; 898.

2.5 **ACOUSTICAL JOINT SEALANTS**

A. Sealant JS-A1 - Acoustical Joint Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. GE Construction Sealants; RCS20 Acoustical.
 b. Pecora Corporation; [AC-20 FTR] [AIS-919].
 c. Tremco, Incorporated; Tremco Acoustical Sealant.

2.6 **JOINT SEALANT BACKING**

A. General: Provide sealant backings of material that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C 1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.

2.7 **MISCELLANEOUS MATERIALS**

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 a. Concrete.
 b. Masonry.
 c. Unglazed surfaces of ceramic tile.
 d. Exterior insulation and finish systems.
 3. Remove laitance and form-release agents from concrete.
 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 a. Metal.
 b. Glass.
 c. Porcelain enamel.
 d. Glazed surfaces of ceramic tile.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Do not extend exterior sealants and primers into building interior (that is, inside the weatherproofing system) unless first verifying compliance with VOC requirements.

D. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of sealant backings.
 2. Do not stretch, twist, puncture, or tear sealant backings.
 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealant from surfaces adjacent to joints.
 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces. Water-based tooling agents are unacceptable.
 3. Provide concave joint profile per Figure 8A in ASTM C 1193, unless otherwise indicated.
 4. Provide flush joint profile where indicated per Figure 8B in ASTM C 1193.
 5. Provide recessed joint configuration of recess depth and at locations indicated per Figure 8C in ASTM C 1193.
 a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

G. Installation of Preformed Silicone-Sealant System: Comply with the following requirements:
 1. Apply masking tape to each side of joint, outside of area to be covered by sealant system.
 2. Apply silicone sealant to each side of joint to produce a bead of size complying with preformed silicone-sealant system manufacturer's written instructions and covering a bonding area of not less than 3/8 inch. Hold edge of sealant bead 1/4 inch inside masking tape.
 3. Within 10 minutes of sealant application, press silicone extrusion into sealant to wet extrusion and substrate. Use a roller to apply consistent pressure and ensure uniform contact between sealant and both extrusion and substrate.
 4. Complete installation of sealant system in horizontal joints before installing in vertical joints. Lap vertical joints over horizontal joints. At ends of joints, cut silicone extrusion with a razor knife.

H. Installation of Preformed Foam Sealants: Install each length of sealant immediately after removing protective wrapping. Do not pull or stretch material. Produce seal continuity at ends, turns, and intersections of joints. For applications at low ambient temperatures, apply heat to sealant in compliance with sealant manufacturer's written instructions.

I. Acoustical Sealant Installation: At sound-rated assemblies and elsewhere as indicated, seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations.

3.4 CLEANING
 A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION
 A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.
3.6 JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces; Type JS-L1 JS-B1.
 1. Joint Locations:
 a. Perimeter joints of exterior openings where indicated.
 b. Vertical joints on exposed surfaces of interior unit masonry walls and partitions.
 c. Perimeter joints between interior wall surfaces and frames of interior doors.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

B. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces; Type JS-M1.
 1. Joint Sealant Location:
 a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

 1. Joint Location:
 a. Acoustical joints where indicated.
 2. Joint-Sealant Color: As selected by Architect from manufacturer's full range.

END OF SECTION
SECTION 081113.13 - STANDARD HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes standard hollow-metal doors and frames.
B. Related Requirements:
 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.3 DEFINITIONS
A. Minimum Thickness: Minimum thickness of base metal without coatings according to SDI A250.8.

1.4 COORDINATION
A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, and finishes.

B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of anchorages, joints, field splices, and connections.
 7. Details of accessories.
 8. Details of moldings, removable stops, and glazing.
 9. Details of conduit and preparations for power, signal, and control systems.

C. Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.6 QUALITY ASSURANCE
A. Provide the following upon request:
 1. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.
 2. Oversize Construction Certification: For assemblies required to be fire rated and exceeding limitations of labeled assemblies.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 1. Provide additional protection to prevent damage to factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch-high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, [provide products by the following] [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:
 1. Amweld International, LLC.
 2. Ceco Door Products; an Assa Abloy Group company.
 3. Curries Company; an Assa Abloy Group company.
 4. Mesker Door Inc.
 5. Pioneer Industries, Inc.
 7. Steelcraft; an Ingersoll-Rand company.

B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

2.2 REGULATORY REQUIREMENTS

A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings [and temperature-rise limits] indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.

B. Fire-Rated, Borrowed-Light Assemblies: Complying with NFPA 80 and listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.

2.3 INTERIOR DOORS AND FRAMES

A. Construct interior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty Doors and Frames: SDI A250.8, Level 2.
 1. Physical Performance: Level B according to SDI A250.4.
 2. Doors:
 b. Face: Uncoated, cold-rolled steel sheet, minimum thickness of 0.042 inch.
 c. Edge Construction: Model 1, Full Flush.
 d. Core: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core at manufacturer's discretion.
a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch. 0.067 inch minimum thickness for openings greater than 48 inches wide.
b. Construction: Full profile welded.

2.4 FRAME ANCHORS

A. Jamb Anchors:
 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch thick, with corrugated or perforated straps not less than 2 inches wide by 10 inches long; or wire anchors not less than 0.177 inch thick.
 2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch thick.
 3. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch-diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch, and as follows:
 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.

2.5 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.
D. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.
E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.
F. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143/C 143M.
G. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.6 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Hollow-Metal Doors:
 1. Steel-Stiffened Door Cores: Provide minimum thickness 0.026 inch, steel vertical stiffeners of same material as face sheets extending full-door height, with vertical webs spaced not more than 6 inches apart. Spot weld to face sheets no more than 5 inches o.c. Fill spaces between stiffeners with glass- or mineral-fiber insulation.
3. **Top Edge Closures:** Close top edges of doors with flush closures of same material as face sheets.
4. **Bottom Edge Closures:** Close bottom edges of doors with end closures or channels of same material as face sheets.
5. **Astragals:** Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted or as required to comply with published listing of qualified testing agency.

C. **Hollow-Metal Frames:** Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 1. **Frames:** Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
 2. **Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.**
 3. **Floor Anchors:** Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
 4. **Jamb Anchors:** Provide number and spacing of anchors as follows:
 a. **Masonry Type:** Locate anchors not more than 16 inches from top and bottom of frame. Space anchors not more than 32 inches o.c., to match coursing, and as follows:
 1) Three anchors per jamb from 60 to 90 inches high.
 b. **Stud-Wall Type:** Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Four anchors per jamb from 60 to 90 inches high.
 5. **Head Anchors:** Two anchors per head for frames more than 42 inches wide and mounted in metal-stud partitions.
 6. **Door Silencers:** Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. **Single-Door Frames:** Drill stop in strike jamb to receive three door silencers.
 b. **Double-Door Frames:** Drill stop in head jamb to receive two door silencers.
 7. **Terminated Stops:** Terminate stops 6 inches above finish floor with a 45-degree angle cut, and close open end of stop with steel sheet closure. Cover opening in extension of frame with welded-steel filler plate, with welds ground smooth and flush with frame.

D. **Fabricate concealed stiffeners and edge channels from either cold- or hot-rolled steel sheet.**

E. **Hardware Preparation:** Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 1. **Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.**
 2. **Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.**

F. **Stops and Moldings:** Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with mitered hairline joints.
 1. **Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.**
 2. **Provide loose stops and moldings on inside of hollow-metal work.**
2.7 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.8 ACCESSORIES

A. Louvers: Provide louvers for interior doors, where indicated, which comply with SDI 111C, with blades or baffles formed of 0.020-inch-thick, cold-rolled steel sheet set into 0.032-inch-thick steel frame.
 1. Sightproof Louver: Stationary louvers constructed with inverted-V or inverted-Y blades.

B. Grout Guards: Formed from same material as frames, not less than 0.016 inch thick.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.

B. Hollow-Metal Frames: Install hollow-metal frames of size and profile indicated. Comply with SDI A250.11.
 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. At fire-rated openings, install frames according to NFPA 80.
 b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 c. Install frames with removable stops located on secure side of opening.
 d. Install door silencers in frames before grouting.
 e. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 f. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
g. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.

4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.

5. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:

 a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.

 b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.

 c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.

 d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

C. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:
 a. Between Door and Frame Jambs and Head: 1/8 inch plus or minus 1/32 inch.
 b. Between Edges of Pairs of Doors: 1/8 inch to 1/4 inch plus or minus 1/32 inch.
 c. At Bottom of Door: [3/4 inch] [5/8 inch] plus or minus 1/32 inch.
 d. Between Door Face and Stop: 1/16 inch to 1/8 inch plus or minus 1/32 inch.

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.

3.4 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from hollow-metal work immediately after installation.

C. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

D. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION
SECTION 083113 - ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Access doors and frames for walls (if required) and ceilings.
 2.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, fire ratings, materials, individual components and profiles, and finishes.

B. Shop Drawings:
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Detail fabrication and installation of access doors and frames for each type of substrate.

C. Product Schedule: Provide complete access door and frame schedule, including types, locations, sizes, latching or locking provisions, and other data pertinent to installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Access Doors and Frames: Units complying with NFPA 80 that are identical to access door and frame assemblies tested for fire-test-response characteristics according to the following test method and that are listed and labeled by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:
 1. NFPA 252 or UL 10B for fire-rated access door assemblies installed vertically.
 2. NFPA 288 for fire-rated access door assemblies installed horizontally.

2.2 ACCESS DOORS AND FRAMES FOR WALLS AND CEILINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated or comparable product by one of the following:
 1. Babcock-Davis.
 2. Jensen Industries; Div. of Broan-Nutone, LLC.
 5. MIFAB, Inc.
 6. Milcor Inc.
 7. Nystrom, Inc.
 8. Williams Bros. Corporation of America (The).
C. Source Limitations: Obtain each type of access door and frame from single source from single manufacturer.

D. Flush Access Doors with Exposed Flanges AD #1:
1. Basis-of-Design Product: Milcor, Inc. DW.
2. Assembly Description: Fabricate door to fit flush to frame. Provide manufacturer's standard-width exposed flange, proportional to door size.
3. Locations: Wall and ceiling.
4. Door Size: To suite field conditions but not larger than 24" x 24".
5. Uncoated Steel Sheet for Door: Nominal 0.060 inch, 16 gage.
6. Frame Material: Same material, thickness, and finish as door.
8. Hardware: Latch Lock.

E. Medium-Security Flush Access Doors AD #3:
2. Assembly Description: Fabricate door to fit flush to frame. Provide manufacturer's standard-width exposed flange, proportional to door size.
3. Locations: Wall.
4. Door Size: To suite field conditions but not larger than 24" x 24".
5. Uncoated Steel Sheet for Door: Nominal 0.075 inch, 14 gage.
6. Metallic-Coated Steel Sheet for Door: Nominal 0.079 inch, 14 gage.
7. Frame Material: Same material, thickness, and finish as door.
9. Hardware: Tamper-resistant latch lock.

F. Fire-Rated, Flush Access Doors with Exposed Flanges AD #2:
1. Basis-of-Design Product: Milcor, Inc. UFR.
2. Assembly Description: Fabricate door to fit flush to frame, with a core of mineral-fiber insulation enclosed in sheet metal. Provide self-latching door with automatic closer and interior latch release. Provide manufacturer's standard-width exposed flange, proportional to door size.
3. Locations: Wall.
4. Door Size: To suite field conditions but not larger than 18" x 18"
5. Fire-Resistance Rating: Not less than that of adjacent construction.
6. Temperature-Rise Rating: 450 deg F at the end of 30 minutes.
7. Uncoated Steel Sheet for Door: Nominal 0.036 inch, 20 gage.
8. Metallic-Coated Steel Sheet for Door: Nominal 0.040 inch, 20 gage.
 a. Finish: [Factory prime] [Factory finish].
9. Frame Material: Same material, thickness, and finish as door.
11. Hardware: Latch Lock.

G. Hardware:
1. Latch: Cam latch operated by knurled knob.
2. Lock: Cylinder.
 a. Lock Preparation: Prepare door panel to accept cylinder to match owner's standard cylinder type.

2.3 MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A 879/A 879M, with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.

C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.

D. Frame Anchors: Same type as door face.

E. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

2.4 FABRICATION

A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.

B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.

C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish attachment devices and fasteners of type required to secure access doors to types of supports indicated.
 1. Provide mounting holes in frames for attachment of units to metal or wood framing.
 2. Provide mounting holes in frame for attachment of masonry anchors.

D. Latching Mechanisms: Furnish number required to hold doors in flush, smooth plane when closed.
 1. For cylinder locks, furnish two keys per lock and key all locks alike.

2.5 FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Steel and Metallic-Coated-Steel Finishes:
 1. Factory Prime: Apply manufacturer's standard, fast-curing, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

B. Install doors flush with adjacent finish surfaces or recessed to receive finish material.

3.3 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.
B. Remove and replace doors and frames that are warped, bowed, or otherwise damaged.

END OF SECTION
SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:
 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.

1.3 ACTION SUBMITTALS

 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

 A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.

2.2 FRAMING SYSTEMS

 A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.

 B. Studs and Runners: ASTM C 645. Use either steel studs and runners or dimpled steel studs and runners.
 1. Steel Studs and Runners:
 a. Manufacturers: Subject to compliance with requirements, provide one of the following:
 1) MRI Steel Framing, LLC.
 b. Minimum Base-Metal Thickness: 0.033 inch.
 c. Depth: As indicated on Drawings.
 2. Equivalent Gauge Thickness Steel Studs and Runners: Special roll-formed studs and runners for flange and web stiffening, manufactured from high-strength steel, third-party tested to conform to equivalent conventional studs and runners in accordance with ICC-ES AC86, Acceptance Criteria for Cold-Formed Steel Framing Members - Interior Nonload-Bearing Wall Assemblies, with current evaluation report acceptable to the authority having jurisdiction.
 a. Manufacturers and Products: Subject to compliance with requirements, provide the following:
 1) ClarkDietrich Building Systems:
 a) ProSTUD 20, 0.019 inch minimum base-metal thickness, NS Grade 65 steel; 20 gauge (0.030 inch) equivalent.
 b) ProTRAK, thickness to match stud thickness.
 c) Depth: 1-1/4 inches.

 C. Slip-Type Head Joints: Where indicated, provide one of the following:
1. Double-Runner System: ASTM C 645 top runners, inside runner with 2-inch- deep flanges in thickness not less than indicated for studs and fastened to studs, and outer runner sized to friction fit inside runner.

2. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) Dietrich Metal Framing; SLP-TRK Slotted Deflection Track.
 2) MBA Building Supplies; Slotted Deflecto Track.
 3) Steel Network Inc. (The); VertiClip SLD Series.
 4) Superior Metal Trim; Superior Flex Track System (SFT).
 5) Telling Industries; Vertical Slip Track.

D. Firestop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of the structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fire Trak Corp.; Fire Trak System attached to studs with Fire Trak Posi Klip.
 c. Metal-Lite, Inc.; The System.

E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 1. Minimum Base-Metal Thickness: 0.033 inch.

F. Cold-Rolled Channel Bridging: Steel, 0.053-inch minimum base-metal thickness, with minimum 1/2-inch- wide flanges.
 1. Depth: 1-1/2 inches.
 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch- thick, galvanized steel.

 1. Minimum Base-Metal Thickness: 0.033 inch.
 2. Depth: As indicated on Drawings or 1-1/2 inches.

H. Resilient Furring Channels: 1/2-inch- deep, steel sheet members designed to reduce sound transmission.
 1. Configuration: Asymmetrical or hat shaped.

I. Cold-Rolled Furring Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch- wide flanges.
 1. Depth: 3/4 inch.
 2. Furring Brackets: Adjustable, corrugated-edge type of steel sheet with minimum uncoated-steel thickness of 0.033 inch.
 3. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.

J. Z-Shaped Furring: With slotted or nonslotted web, face flange of 1-1/4 inches, wall attachment flange of 7/8 inch, minimum uncoated-metal thickness of 0.018 inch, and depth required to fit insulation thickness indicated.

2.3 SUSPENSION SYSTEMS

A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.

B. Hanger Attachments to Concrete:
1. Anchors: Fabricated from corrosion-resistant materials with holes or loops for attaching wire hangers and capable of sustaining, without failure, a load equal to 5 times that imposed by construction as determined by testing according to ASTM E 488 by an independent testing agency.
 a. Type: Postinstalled, expansion anchor.

2. Powder-Actuated Fasteners: Suitable for application indicated, fabricated from corrosion-resistant materials with clips or other devices for attaching hangers of type indicated, and capable of sustaining, without failure, a load equal to 10 times that imposed by construction as determined by testing according to ASTM E 1190 by an independent testing agency.

C. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.15 inch in diameter.

D. Carrying Channels: Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.053 inch and minimum 1/2-inch wide flanges.
 1. Depth: 1-1/2 inches.

E. Furring Channels (Furring Members):
 1. Cold-Rolled Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch wide flanges, 3/4 inch deep.
 2. Steel Studs and Runners: ASTM C 645.
 a. Minimum Base-Metal Thickness: 0.027 inch.
 b. Depth: 1-5/8 inches or 2-1/2 inches.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.
 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

3.3 INSTALLATION, GENERAL

A. Installation Standard: ASTM C 754.
 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
C. Install bracing at terminations in assemblies.

D. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Single-Layer Application: 16 inches o.c. unless otherwise indicated.
 2. Multilayer Application: 16 inches o.c. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction.

D. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.
 5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

E. Direct Furring:
 1. Screw to wood framing.
 2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.

F. Z-Furring Members:
 1. Erect insulation, specified in Section 072100 "Thermal Insulation," vertically and hold in place with Z-furring members spaced 24 inches o.c.
 2. Except at exterior corners, securely attach narrow flanges of furring members to wall with concrete stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.
 3. At exterior corners, attach wide flange of furring members to wall with short flange extending beyond corner; on adjacent wall surface, screw-attach short flange of furring channel to web of attached channel. At interior corners, space second member no more than 12 inches from corner and cut insulation to fit.
3.5 INSTALLING SUSPENSION SYSTEMS

A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

B. Install in accordance with DSA IR 25-3.
 1. Hangers: 48 inches o.c.
 2. Carrying Channels (Main Runners): 48 inches o.c.
 3. Furring Channels (Furring Members): 16 inches o.c.

C. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

D. Suspend hangers from building structure as follows:
 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 5. Do not attach hangers to steel roof deck.
 6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
 7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
 8. Do not connect or suspend steel framing from ducts, pipes, or conduit.

E. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.

F. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION
SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Interior gypsum board.
B. Related Requirements:
1. Section 092216 "Non-Structural Metal Framing" for non-structural framing and suspension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 DELIVERY, STORAGE AND HANDLING
A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS
A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL
A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.
2.3 INTERIOR GYPSUM BOARD

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CertainTeed Corporation.
 2. Georgia-Pacific Building Products.
 3. Lafarge North America Inc.
 5. PABCO Gypsum.
 7. USG Corporation.

B.

C. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered.

D. Gypsum Ceiling Board: ASTM C 1396/C 1396M.
 1. Thickness: 1/2 inch.
 2. Long Edges: Tapered.

 1. Core: 5/8 inch, Type X.
 2. Long Edges: Tapered.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.
 4. Use in all High Traffic areas corridors and around new door openings.

F. Moisture- and Mold-Resistant Gypsum Board: ASTM C 1396/C 1396M. With moisture- and mold-resistant core and paper surfaces.
 1. Core: 5/8 inch, Type X.
 2. Long Edges: Tapered.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.4 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.
 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 2. Shapes:
 a. Cornerbead.
 b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 c. L-Bead: L-shaped; exposed long flange receives joint compound.
 d. U-Bead: J-shaped; exposed short flange does not receive joint compound.

2.5 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:
 1. Interior Gypsum Board: Paper.

C. Joint Compound for Interior Gypsum Board: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
3. Fill Coat: For second coat, use setting-type, sandable topping compound.
4. Finish Coat: For third coat, use setting-type, sandable topping compound.

2.6 AUXILIARY MATERIALS
A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
C. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
D. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine areas and substrates including welded hollow-metal frames and framing, with Installer present, for compliance with requirements and other conditions affecting performance.
B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL
A. Comply with ASTM C 840.
B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.
D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
E. Form control and expansion joints with space between edges of adjoining gypsum panels.
F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

J. Install firestop putty pads in accordance with pad manufacturer’s instructions.
 1. Install firestop putty pads at electrical boxes in fire-rated partitions.
 2. Install acoustic putty pads at electrical boxes in sound-rated partitions.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:
 1. Wallboard Type: Vertical surfaces unless otherwise indicated.
 2. Type X: Where required for fire-resistance-rated assembly.
 3. Ceiling Type: Ceiling surfaces.
 4. Abuse-Resistant Type: As indicated on Drawings.
 5. Moisture- and Mold-Resistant Type: Install in wet use areas.

B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 2. On partitions/walls, apply gypsum panels unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.

C. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written recommendations and temporarily brace or fasten gypsum panels until fastening adhesive has set.

3.4 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners unless otherwise indicated.
 2. LC-Bead: Use at exposed panel edges.
 3. L-Bead: Use where indicated.
 4. U-Bead: Use at exposed panel edges.

3.5 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."
 3. Level 5: Where indicated on Drawings.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

E. Glass-Mat Faced Panels: Finish according to manufacturer's written instructions.

3.6 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION
SECTION 095113 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes acoustical panels and exposed suspension systems for ceilings.
B. Products furnished, but not installed under this Section, include anchors, clips, and other ceiling attachment devices to be cast in concrete.

1.3 ACTION SUBMITTALS
A. Submittal Compliance Form: If Basis-of-Design products are provided, Submittal Compliance Form may be submitted in lieu of required Product Data submittal. Ensure compliance with requirements included in Section 013300 "Submittal Procedures."
B. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Suspended ceiling components.
 2. Structural members to which suspension systems will be attached.
 3. Size and location of initial access modules for acoustical panels.
 4. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Speakers.
 c. Sprinklers.
 5. Perimeter moldings.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Acoustical Ceiling Panels: Full-size panels equal to 2 percent of quantity installed.
 2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.

1.6 QUALITY ASSURANCE
A. Provide the following upon request:
 1. Product Test Reports: For each acoustical panel ceiling, for tests performed by [manufacturer and witnessed by a qualified testing agency][a qualified testing agency].
1.7 DELIVERY, STORAGE, AND HANDLING
A. Deliver acoustical panels, suspension-system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.
C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.8 FIELD CONDITIONS
A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
 1. Pressurized Plenums: Operate ventilation system for not less than 48 hours before beginning acoustical panel ceiling installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Comply with ASTM E 1264 for Class A materials.
 2. Smoke-Developed Index: 50 or less.
B. Fire-Resistance Ratings: Comply with ASTM E 119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

2.2 ACOUSTICAL PANELS, GENERAL
A. Source Limitations: Obtain each type of acoustical ceiling panel and supporting suspension system from single source from single manufacturer.
B. Acoustical Panel Colors and Patterns: Match appearance characteristics indicated for each product type.

2.3 ACOUSTICAL PANELS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
B. Basis-of-Design Product: Subject to compliance with requirements, provide provide a panel to match the existing panels or comparable product by one of the following:
 1. Armstrong World Industries, Inc.
 2. CertainTeed Corp.
 3. USG Interiors, Inc.; Subsidiary of USG Corporation.
C. Acoustical Panel Ceiling Type ACT-1 Ultima tegular by Armstrong or equal.- (Match Existing Panels)
 1. Classification: Provide panels complying with ASTM E 1264 for type, form, and pattern as follows:
 a. Type and Form: Type IV, wet form mineral base with membrane-faced overlay; Form 2, nodular.
 b. Pattern: G (smooth).
 3. LR: Not less than 0.85.
4. **Edge/Joint Detail:** Reveal sized to fit flange of exposed suspension-system members.
5. **Thickness:** 5/8 inch.
6. **Modular Size:** 24 by 24 inches.

D. Acoustical Panel Ceiling Type ACT-2
1. **Basis-of-Design Product:** Subject to compliance with requirements, provide a panel to match the existing panel or comparable product by one of the following:
 a. **Armstrong World Industries, Inc.**
 b. **CertainTeed Corp**
 c. **USG Interiors, Inc.; Subsidiary of USG Corporation.**

E. Acoustical Panel Ceiling Type ACT-2 Match Existing Panels
1. **Type and Form:** Type III, mineral base with painted finish; Form 2, water felted.
2. **Color:** White
3. **LR:** Not less than 0.84
4. **Edge/Joint Detail:** Square

2.4 METAL SUSPENSION SYSTEMS, GENERAL

A. Metal Suspension-System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 635/C 635M.

B. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
1. **Anchors in Concrete:** Anchors of type and material indicated below, with holes or loops for attaching hangers of type indicated and with capability to sustain, without failure, a load equal to five times that imposed by ceiling construction, as determined by testing according to ASTM E 488 or ASTM E 1512 as applicable, conducted by a qualified testing and inspecting agency.
 a. **Corrosion Protection:** Carbon-steel components zinc plated to comply with ASTM B 633, Class Fe/Zn 5 (0.005 mm) for Class SC 1 service condition.

C. Wire Hangers, Braces, and Ties: Provide wires complying with the following requirements:
1. **Zinc-Coated, Carbon-Steel Wire:** ASTM A 641/A 641M, Class 1 zinc coating, soft temper.
2. **Size:** Select wire diameter so its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 0.106-inch-diameter wire.

2.5 METAL SUSPENSION SYSTEM

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide products to match the existing suspension system or comparable product by one of the following:
1. **Armstrong World Industries, Inc.**
2. **CertainTeed Corp**
3. **USG Interiors, Inc.; Subsidiary of USG Corporation.**

C. ACT-2 (To match existing) Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized according to ASTM A 653/A 653M, not less than G30 coating designation; with prefinished 15/16-inch-wide metal caps on flanges.
1. **Structural Classification:** Intermediate-duty system.
2. **End Condition of Cross Runners:** Override (stepped) type.
3. **Face Design:** Flat, flush.
4. **Cap Material:** Aluminum cold-rolled sheet.

D. ACT-1 Narrow-Face, Uncapped, Double-Web, Steel Suspension System to match existing: Main and cross runners roll formed from cold-rolled steel sheet; pre painted, electrolytically zinc coated, or hot-dip galvanized; to produce structural members with 9/16-inch-wide faces.
 2. Face Design: With 1/4-inch- wide, slotted, box-shaped flange.
 3. Face Finish: Painted white.
 4. Reveal Finish: Painted white.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
 B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.

3.3 INSTALLATION
 A. General: Install acoustical panel ceilings to comply with ASTM C 636/C 636M, according to manufacturer's written instructions and CISCA's "Ceiling Systems Handbook."
 B. Suspend ceiling hangers from building's structural members and as follows:
 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 2. Splay hangers only where required and, if permitted with fire-resistance-rated ceilings, to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.
6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.

7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.

8. Do not attach hangers to steel deck tabs.

9. Do not attach hangers to steel roof deck. Attach hangers to structural members.

10. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.

11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.

C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.

D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.

1. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.

2. Do not use exposed fasteners, including pop rivets, on moldings and trim.

E. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

F. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.

1. Arrange directionally patterned acoustical panels as follows:
 a. As indicated on reflected ceiling plans.
 b. Install panels with pattern running in one direction parallel to long axis of space.
 c. Install panels in a basket-weave pattern.

2. For reveal-edged panels on suspension-system members with box-shaped flanges, install panels with reveal surfaces in firm contact with suspension-system surfaces and panel faces flush with bottom face of runners.

3. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.

3.4 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Resilient base.
 2. Resilient molding accessories.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For each exposed product and for each color and texture specified, not less than 12 inches long.
 C. Samples for Initial Selection: For each type of product indicated.
 D. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer's standard-size Samples, but not less than 12 inches long.

1.4 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

1.6 FIELD CONDITIONS
 A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following time periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
 B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
 C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. FloorScore Compliance: Resilient base shall comply with requirements of FloorScore certification.
B. Static Coefficient of Friction: Minimum 0.6 as determined by testing identical products per ASTM D 2047.

2.2 THERMOPLASTIC-RUBBER BASE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong World Industries, Inc.
 2. Burke Mercer Flooring Products, Division of Burke Industries Inc.
 3. Johnsonite; A Tarkett Company.

B. Product Standard: ASTM F 1861, Type TP (rubber, thermoplastic).
 2. Style and Location:
 a. Style A, Straight: Provide in areas with carpet.
 b. Style B, Cove: Provide in areas with resilient flooring.

C. Thickness: 0.125 inch.

D. Height: 4 inches.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed or preformed.

G. Inside Corners: Job formed or preformed.

H. Colors: Match existing base colors and as indicated on finish schedule.

2.3 VINYL MOLDING ACCESSORY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong World Industries, Inc.
 2. Burke Mercer Flooring Products, Division of Burke Industries Inc.
 3. Johnsonite; A Tarkett Company.
 4. Roppe Corporation, USA.

B. Description: Vinyl carpet edge for glue-down applications.

C. Locations: Provide vinyl molding accessories in areas indicated.

D. Colors and Patterns: Match base colors of adjacent rooms.

2.4 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

C. Metal Edge Strips: Extruded aluminum with mill finish of width shown, of height required to protect exposed edges of flooring, and in maximum available lengths to minimize running joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
 1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

C. Do not install resilient products until they are the same temperature as the space where they are to be installed.

D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.

B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.

B. Perform the following operations immediately after completing resilient-product installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum horizontal surfaces thoroughly.
 3. Damp-mop horizontal surfaces to remove marks and soil.

C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, visible adhesive, and surface blemishes from resilient stair treads before applying liquid floor polish.
 1. Apply one coat(s).

E. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION
SECTION 096519 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vinyl composition floor tile.

B. Related Requirements:
 1. Section 096513 "Resilient Base and Accessories" for resilient base, reducer strips, and other accessories installed with resilient floor coverings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For each type of floor tile. Include floor tile layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 1. Show details of special patterns.

C. Samples: Full-size units of each color and pattern of floor tile required.
 1. For heat-welding bead, manufacturer's standard-size Samples, but not less than 9 inches long, of each color required.

1.4 INFORMATIONAL SUBMITTALS

A. Certifications: Submit a certification signed by the manufacturer and installer stating that the resilient flooring has been installed as specified and in accordance with fire-test response characteristics.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.7 QUALITY ASSURANCE

A. Provide the following upon request:
 1. Qualification Data: For Installer.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store floor tiles on flat surfaces.
1.9 FIELD CONDITIONS
 A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive floor tile during the following time periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.
 B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.
 C. Close spaces to traffic during floor tile installation.
 D. Close spaces to traffic for 48 hours after floor tile installation.
 E. Install floor tile after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS
2.1 PERFORMANCE REQUIREMENTS
 A. Static Coefficient of Friction: For resilient sheet flooring installed on walkway surfaces, provide products with the following values as determined by testing identical products per ASTM D 2047:
 1. Level Surfaces: Minimum 0.6.

2.2 VINYL COMPOSITION FLOOR TILE VCT-1
 A. Products: Subject to compliance with requirements, provide one of the following:
 1. Armstrong World Industries, Inc; <Insert product name or designation>.
 2. Congoleum Corporation; <Insert product name or designation>.
 3. Mannington Mills, Inc; <Insert product name or designation>.
 B. Wearing Surface: Smooth.
 C. Thickness: 0.125 inch.
 D. Size: 12 by 12 inches.
 E. Colors and Patterns: As selected by Architect from full range of industry colors to match existing flooring and as indicated on interior finish schedule.

2.3 INSTALLATION MATERIALS
 A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.
 B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.
 C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION
3.1 EXAMINATION
 A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F 710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
 4. Moisture Testing: Proceed with installation only after substrates pass testing according to floor tile manufacturer's written recommendations, but not less stringent than the following:
 a. Perform anhydrous calcium chloride test according to ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 b. Perform relative humidity test using in situ probes according to ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level.
 5. If water moisture tests exceed stated limits, apply vapor retarder for moisture vapor emission control as specified.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Do not install floor tiles until they are the same temperature as the space where they are to be installed.
 1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.3 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 1. Lay tiles square with room axis.

C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 1. Lay tiles with grain running in one direction.

D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.

G. Adhere floor tiles to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.

B. Perform the following operations immediately after completing floor tile installation:
 1. Remove adhesive and other blemishes from exposed surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.

C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish.
 1. Apply two coat(s).

E. Cover floor tile until Substantial Completion.

END OF SECTION
SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes surface preparation and the application of paint systems on interior substrates.
 1. Concrete masonry units (CMUs).
 2. Gypsum board.
 3. Plaster.

1.3 DEFINITIONS
 A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
 B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
 C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
 D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
 E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D 523.
 F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.
 G. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS
 A. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.
 B. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.
1.7 FIELD CONDITIONS
 A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
 B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 B. Basis-of-Design Product: Subject to compliance with requirements, provide Products acceptable to the owner or comparable product by one of the following:
 2. Benjamin Moore & Co.
 3. Dulux (formerly ICI Paints); a brand of AkzoNobel.

2.2 PAINT, GENERAL
 A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."
 1. Provide products from manufacturer's premium or professional product line.
 B. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 1. Concrete: 12 percent.
 2. Gypsum Board: 12 percent.
 3. Plaster: 12 percent.
 C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
 D. Plaster Substrates: Verify that plaster is fully cured.
 E. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
 F. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.
3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.

E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

C. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

D. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 1. Paint the following work where exposed in equipment rooms:
 a. Uninsulated metal piping.
 b. Uninsulated plastic piping.
 c. Pipe hangers and supports.
 d. Metal conduit.
 e. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 2. Paint the following work where exposed in occupied spaces:
 a. Uninsulated metal piping.
b. Uninsulated plastic piping.
c. Pipe hangers and supports.
d. Metal conduit.
e. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
f. Other items as directed by Architect.

3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 FIRE-RATED AND SMOKE CONTAINMENT ASSEMBLIES

A. Fire walls, fire barriers, fire partitions, smoke barriers and smoke partitions or any other wall required to have protected openings or penetrations shall be effectively and permanently identified with signs or stenciling. Such identification shall:
 1. Be located in accessible concealed floor, floor-ceiling or attic spaces; and
 2. Be repeated at intervals not exceeding 30 feet measured horizontally along both sides of the wall or partition; and
 3. Include lettering not less than 0.5 inch in height, incorporating the suggested wording: "X HOUR FIRE AND/OR SMOKE BARRIER-PROTECT ALL OPENINGS" or other wording approved or required by AHJ (Authority Having Jurisdiction). Replace “X” with the appropriate designated hourly rating.
 4. Apply a minimum one-inch wide bright red horizontal line, both sides of wall, interrupted for approved text, at the required interval.

B. Refer to the Life Safety Plan and Construction Subsystems Drawings for locations of walls and applicable ratings.

3.5 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

B. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

C. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

D. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.7 INTERIOR PAINTING SCHEDULE

A. CMU Substrates:
 1. Latex System MPI INT4.2A:
c. Topcoat: Latex, interior (MPI Gloss Level 3), MPI#52.

2. Institutional Low-Odor/VOC Latex System MPI INT4.2E:

3. High-Performance Architectural Latex System MPI INT4.2P:
 a. Prime Coat: Primer, alkali resistant, water based, MPI#3.
 c. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 3), MPI#139.
 d. Topcoat: Latex, interior, high performance architectural (MPI Gloss Level 4), MPI#140.

B. Gypsum Board and Plaster Substrates:
 1. Latex over Latex Sealer System MPI INT9.2A:
 a. Prime Coat: Primer sealer, latex, interior, MPI#50.
 c. Topcoat: Latex, interior (MPI Gloss Level 3), MPI#52.
 2. Latex over Alkyd Primer System (for Plaster Only) MPI INT9.2K:
 a. Prime Coat: Primer sealer, alkyd, interior, MPI#45.
 c. Topcoat: Latex, interior (MPI Gloss Level 3), MPI#52.
 3. Institutional Low-Odor/VOC Latex System MPI INT9.2M:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI#149.

C. Insulation-Covering Substrates: Including pipe and duct coverings.

END OF SECTION
SECTION 102600 - WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Wall guards.
 2. Corner guards.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, impact strength, dimensions of individual components and profiles, and finishes.
B. Shop Drawings: For each type of wall and door protection showing locations and extent.
 1. Include plans, elevations, sections, and attachment details.
C. Samples for Initial Selection: For each type of impact-resistant wall-protection unit indicated, in each color and texture specified.
D. Samples for Verification: For each type of exposed finish on the following products, prepared on Samples of size indicated below:
 1. Corner Guards: 12 inches long. Include example top caps.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For each type of wall and door protection product to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Wall-Guard Covers: Full-size plastic covers of maximum length equal to 2 percent of each type, color, and texture of cover installed, but no fewer than two, 96-inch-long units.
 2. Corner-Guard Covers: Full-size plastic covers of maximum length equal to 2 percent of each type, color, and texture of cover installed, but no fewer than two, 48-inch-long units.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Store wall and door protection in original undamaged packages and containers inside well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity.
 1. Maintain room temperature within storage area at not less than 70 deg F during the period plastic materials are stored.
 2. Store plastic wall- and door-protection components for a minimum of 72 hours, or until plastic material attains a minimum room temperature of 70 deg F.
 a. Store wall-guard covers in a horizontal position.
1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of wall- and door-protection units that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including detachment of components from each other or from the substrates, delamination, and permanent deformation beyond normal use.
 b. Deterioration of metals, metal finishes, plastics, and other materials beyond normal use.
 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain wall- and door-protection products of each type from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

2.3 WALL GUARDS

A. Crash Rail: Heavy-duty assembly consisting of continuous snap-on plastic cover installed over concealed retainer; designed to withstand impacts.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide Products that match existing or comparable product by one of the following:
 a. American Floor Products Co., Inc.
 b. Babcock-Davis.
 c. Construction Specialties, Inc.
 d. InPro Corporation.
 e. Korogard Wall Protection Systems; a division of RJF International Corporation.
 f. WallGuard.com.
 3. Cover: Extruded rigid plastic, minimum 0.100-inch wall thickness; as follows:
 a. Profile: Flat.
 1) Dimensions: Nominal 6 inches high by 1 inch deep.
 2) Surface: Uniform .
 b. Color and Texture: Match Existing .
 4. Continuous Retainer: Minimum 0.080-inch thick, one-piece, extruded aluminum.
 5. End Caps and Corners: Prefabricated, injection-molded plastic; matching color cover; field adjustable for close alignment with snap-on cover.
 6. Accessories: Concealed splices and mounting hardware.
 7. Mounting: Surface mounted directly to wall.

B. Bumper Rail: Standard-duty assembly consisting of continuous snap-on plastic cover installed over concealed retainer; designed to withstand impacts.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide products that match existing or comparable product by one of the following:
2.4 CORNER GUARDS

A. Surface-Mounted, Plastic-Cover Corner Guards: Manufacturer's standard assembly consisting of snap-on, resilient plastic cover installed over retainer; including mounting hardware; fabricated with 90- or 135-degree turn to match wall condition.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Floor Products Co., Inc.
 b. Construction Specialties, Inc.
 c. InPro Corporation.
 d. Korogard Wall Protection Systems; a division of RJF International Corporation.
 e. WallGuard.com.

2. Basis-of-Design Product: Subject to compliance with requirements, provide product to match existing or comparable product by one of the following:
 a. American Floor Products Co., Inc.
 b. Construction Specialties, Inc.
 c. InPro Corporation.
 d. Korogard Wall Protection Systems; a division of RJF International Corporation.
 e. WallGuard.com.

3. Cover: Extruded rigid plastic, minimum wall thickness; as follows:
 a. Profile: Nominal Size to match existing.
 b. Height: 4 feet.
 c. Color and Texture: To match existing color and texture.

4. Continuous Retainer: Minimum 0.080-inch- thick, one-piece, extruded aluminum.

5. End Caps and Corners: Prefabricated, injection-molded plastic; matching color cover; field adjustable for close alignment with snap-on cover.

6. Accessories: Concealed splices and mounting hardware.

7. Mounting: Surface mounted directly to wall.

2.5 MATERIALS

A. Plastic Materials: Chemical- and stain-resistant, high-impact-resistant plastic with integral color throughout; extruded and sheet material as required, thickness as indicated.

B. Polycarbonate Plastic Sheet: ASTM D 6098, S-PC01, Class 1 or Class 2, abrasion resistant; with a minimum impact-resistance rating of 15 ft.-lbf/in. of notch when tested according to ASTM D 256, Test Method A.

C. Solid Wood: Clear hardwood lumber of species indicated, free of appearance defects, and selected for compatible grain and color.

D. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.
2.6 FABRICATION

A. Fabricate wall and door protection according to requirements indicated for design, performance, dimensions, and member sizes, including thicknesses of components.

B. Factory Assembly: Assemble components in factory to greatest extent possible to minimize field assembly. Disassemble only as necessary for shipping and handling.

C. Quality: Fabricate components with uniformly tight seams and joints and with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

2.7 FINISHES

A. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and wall areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine walls to which wall and door protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.
 1. For wall and door protection attached with adhesive, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Complete finishing operations, including painting, before installing wall and door protection.

B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.3 INSTALLATION

A. Installation Quality: Install wall and door protection according to manufacturer's written instructions, level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.

B. Mounting Heights: Install wall and door protection in locations and at mounting heights indicated on Drawings.
 1. Crash Rails: To match existing above finished floor.

C. Accessories: Provide splices, mounting hardware, anchors, trim, joint moldings, and other accessories required for a complete installation.
 1. Provide anchoring devices and suitable locations to withstand imposed loads.
 2. Where splices occur in horizontal runs of more than 20 feet, splice aluminum retainers and plastic covers at different locations along the run, but no closer than 12 inches apart.
 3. Adjust end and top caps as required to ensure tight seams.
3.4 CLEANING

 A. Remove excess adhesive using methods and materials recommended in writing by manufacturer.

END OF SECTION
SECTION 123553.01 - LABORATORY CASEWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal laboratory casework.
 2. Utility-space framing at backs of base cabinets and between backs of base cabinets.
 3. Filler and closure panels.
 4. Laboratory countertops.
 5. Shelves.
 6. Laboratory sinks
 7. Laboratory accessories.
 8. Water, laboratory gas, and electrical service fittings.

B. Related Sections:
 1. Section 061053 "Miscellaneous Rough Carpentry" for wood blocking for anchoring laboratory casework.
 2. Section 092216 "Non-Structural Metal Framing" for reinforcements in metal-framed partitions for anchoring laboratory casework.
 3. Section 096513 "Resilient Base and Accessories" for resilient base applied to metal laboratory casework.
 4. Section 115313 "Laboratory Fume Hoods" for fume hoods, including base cabinets and countertops under fume hoods.

1.3 DEFINITIONS

A. MDF: Medium-density fiberboard.

B. Exposed Surfaces of Casework: Surfaces visible when doors and drawers are closed, including bottoms of cabinets more than 48 inches above floor, and visible surfaces in open cabinets or behind glass doors.

 1. Ends of cabinets, including those installed directly against walls or other cabinets, are defined as "exposed."
 2. Ends of cabinets indicated to be installed directly against and completely concealed by walls or other cabinets are defined as "concealed."

C. Semiexposed Surfaces of Casework: Surfaces behind opaque doors, such as cabinet interiors, shelves, and dividers; interiors and sides of drawers; and interior faces of doors. Tops of cabinets 78 inches or more above floor are defined as "semiexposed."

D. Concealed Surfaces of Casework: Include sleepers, web frames, dust panels, and other surfaces not usually visible after installation.
1.4 PERFORMANCE REQUIREMENTS

A. System Structural Performance: Laboratory casework and support framing system shall withstand the effects of the following gravity loads and stresses without permanent deformation, excessive deflection, or binding of drawers and doors:
 1. Suspended Base Cabinets (Internal Load): 160 lb/ft..
 2. Work Surfaces (Including Tops of Suspended Base Cabinets): 160 lb/ft..
 3. Wall Cabinets (Upper Cabinets): 160 lb/ft..
 4. Shelves: 40 lb/sq. ft..

1.5 ACTION SUBMITTALS

A. Submittal Compliance Form: If Basis-of-Design products are provided, Submittal Compliance Form may be submitted in lieu of required [Product Data submittal][and][Samples submittal]. Ensure compliance with requirements included in Section 013300 "Submittal Procedures."
B. Product Data: For each type of product indicated.
C. Shop Drawings: For laboratory casework. Include plans, elevations, sections, details, and attachments to other work.
 1. Indicate locations of hardware and keying of locks.
 2. Indicate locations and types of service fittings.
 3. Indicate locations of blocking and reinforcements required for installing laboratory casework.
 4. Include details of utility spaces showing supports for conduits and piping.
 5. Include details of support framing system.
 6. Include details of exposed conduits, if required, for service fittings.
 7. Indicate locations of and clearances from adjacent walls, doors, windows, other building components, and other laboratory equipment.
 8. Include coordinated dimensions for laboratory equipment specified in other Sections.
D. Samples for Initial Selection: For factory-applied finishes and other materials requiring color selection.
E. Samples for Verification: For each type of cabinet finish and each type of countertop material indicated, in manufacturer's standard sizes.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish complete touchup kit for each type and color of metal laboratory casework provided. Include fillers, primers, paints, and other materials necessary to perform permanent repairs to damaged laboratory casework finish.
B. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Cabinet Mounting Clips and Related Hardware: Quantity equal to 5 percent of amount installed, but no fewer than 20 of each type.
 2. Modular Countertop Units: Two extra units of each length and material installed.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer that produces casework of types indicated for this Project that has been tested for compliance with SEFA 8.
B. Source Limitations: Obtain laboratory casework from single source from single manufacturer unless otherwise indicated.
 1. Obtain countertops sinks accessories and service fittings from casework manufacturer.
C. Retain first paragraph below for metal and wood laboratory casework only; plastic-laminate casework will not comply with referenced standard.
D. Casework Product Standard: Comply with SEFA 8, "Laboratory Furniture - Casework, Shelving and Tables - Recommended Practices."

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Keying Conference: Conduct conference at Project site. Incorporate keying conference decisions into final keying requirements.

G. Preinstallation Conference: Conduct conference at Project site.

H. Provide the following upon request:
1. Qualification Data: For qualified manufacturer.
2. Product Test Reports for Casework: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating compliance of laboratory casework with requirements of specified product standard and system structural performance specified in "Performance Requirements" Article.
3. Product Test Reports for Countertop Surface Material: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating compliance of laboratory countertop surface materials with requirements specified for chemical and physical resistance.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Protect finished surfaces during handling and installation with protective covering of polyethylene film or other suitable material.

1.9 PROJECT CONDITIONS
A. Environmental Limitations: Do not deliver or install laboratory casework until building is enclosed, utility roughing-in and wet work are complete and dry, and temporary HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

1.10 COORDINATION
A. Coordinate layout and installation of framing and reinforcements for support of laboratory casework.
B. Coordinate installation of laboratory casework with installation of fume hoods and other laboratory equipment.

PART 2 - PRODUCTS

2.1 METAL CABINET AND TABLE MATERIALS
A. Metal: Cold-rolled, commercial steel (CS) sheet, complying with ASTM A 1008/A 1008M; matte finish; suitable for exposed applications.
B. Nominal Metal Thickness:
1. Sides, Ends, Fixed Backs, Bottoms, Tops, Soffits, and Items Not Otherwise Indicated: 0.048 inch.
2. Back Panels, Doors, Drawer Fronts and Bodies, and Shelves: 0.036 inch except 0.048 inch for unreinforced shelves more than 36 inches long.
3. Intermediate Horizontal Rails, Table Aprons and Cross Rails, Center Posts, and Top Gussets: 0.060 inch.
4. Drawer Runners, Sink Supports, and Hinge Reinforcements: 0.075 inch.
5. Leveling and Corner Gussets: 0.105 inch.
2.2 COUNTERTOP TABLE TOP SHELF AND SINK MATERIALS

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Durcon Company (The).
 b. Laboratory Tops, Inc.
 c. Prime Industries, Inc.
 2. Physical Properties:
 a. Flexural Strength: Not less than 10,000 psi.
 b. Modulus of Elasticity: Not less than 2,000,000 psi.
 c. Hardness (Rockwell M): Not less than 100.
 d. Water Absorption (24 Hours): Not more than 0.02 percent.
 e. Heat Distortion Point: Not less than 260 deg F.
 3. Chemical Resistance: Epoxy-resin material has the following ratings when tested with indicated reagents according to NEMA LD 3, Test Procedure 3.4.5:
 a. No Effect: Acetic acid (98 percent), acetone, ammonium hydroxide (28 percent), benzene, carbon tetrachloride, dimethyl formamide, ethyl acetate, ethyl alcohol, ethyl ether, methyl alcohol, nitric acid (70 percent), phenol, sulfuric acid (60 percent), and toluene.
 b. Slight Effect: Chromic acid (60 percent) and sodium hydroxide (50 percent).

B. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304.

2.3 METAL CABINETS AND TABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Basis-of-Design Product: Subject to compliance with requirements, provide cabinets to match existing cabinets or comparable product by one of the following:
 1. BMC Manufacturing.
 2. Hanson Lab Furniture.
 3. Jamestown Metal Products.
 5. Lab Crafters, Inc.
 7. Mott Manufacturing Ltd.
 8.

C. Fabrication: Assemble and finish units at point of manufacture. Use precision dies for interchangeability of like-size drawers, doors, and similar parts. Perform assembly on precision jigs to provide units that are square. Reinforce units with angles, gussets, and channels. Except where otherwise specified, integrally frame and weld cabinet bodies to form dirt and vermin-resistant enclosures. Where applicable, reinforce base cabinets for sink support. Maintain uniform clearance around door and drawer fronts of 1/16 to 3/32 inch.

D. Flush Doors: Outer and inner pans that nest into box formation, with full-height channel reinforcements at center of door. Fill doors with noncombustible, sound-deadening material.

E. Glazed Doors: Hollow-metal stiles and rails of similar construction as flush doors, with glass held in resilient channels or gasket material.

F. Hinged Doors: Mortise for hinges and reinforce with angles welded inside inner pans at hinge edge.
G. Drawers: Fronts made from outer and inner pans that nest into box formation, with no raw metal edges at top. Sides, back, and bottom fabricated in one piece with rolled or formed top of sides for stiffening and comfortable grasp for drawer removal. Provide drawers with rubber bumpers, polymer roller slides, and positive stops to prevent metal-to-metal contact or accidental removal.

H. Adjustable Shelves: Front, back, and ends formed down, with edges returned horizontally at front and back to form reinforcing channels.

I. Toe Space: Fully enclosed, 4 inches high by 3 inches deep, with no open gaps or pockets.

J. Utilities: Provide space, cutouts, and holes for pipes, conduits, and fittings in cabinet bodies to accommodate utility services and their support-strut assemblies.
 1. Provide base cabinets with removable backs for access to utility space.

K. Utility-Space Framing: Laboratory casework manufacturer's standard steel framing units consisting of 2 steel slotted channels complying with MFMA-4, not less than 1-5/8 inches square by 0.105-inch nominal thickness, and connected at top and bottom by U-shaped brackets made from 1-1/4-by-1/4-inch steel flat bars. Framing units may be made by welding specified channel material into rectangular frames instead of using U-shaped brackets.

L. Filler and Closure Panels: Provide where indicated and as needed to close spaces between cabinets and walls, ceilings, and indicated equipment. Fabricate from same material and with same finish as cabinets and with hemmed or flanged edges unless otherwise indicated.
 1. Provide utility-space closure panels at spaces between base cabinets where utility space would otherwise be exposed, including spaces below countertops.
 2. Provide closure panels at ends of utility spaces where utility space would otherwise be exposed.
 3. Provide knee-space panels (modesty panels) at spaces between base cabinets, where [cabinets are not installed against a wall or where space is not otherwise closed] [indicated]. Fabricate from back-to-back panels or of hollow construction to eliminate exposed hemmed or flanged edges.

2.4 PLASTIC-LAMINATE CABINETS

2.5 METAL CABINET FINISH

A. General: Prepare, treat, and finish welded assemblies after assembling. Prepare, treat, and finish components that are to be assembled with mechanical fasteners before assembling. Prepare, treat, and finish concealed surfaces same as exposed surfaces.

B. Preparation: After assembly, clean surfaces of mill scale, rust, oil, and other contaminants. After cleaning, apply a conversion coating suited to the organic coating to be applied over it.

C. Chemical-Resistant Finish: Immediately after cleaning and pretreating, apply laboratory casework manufacturer's standard two-coat, chemical-resistant, baked-on finish consisting of prime coat and thermosetting topcoat. Comply with coating manufacturer's written instructions for applying and baking to achieve a minimum dry film thickness of 2 mils.
 1. Chemical and Physical Resistance of Finish System: Finish complies with acceptance levels of cabinet surface finish tests in SEFA 8. Acceptance level for chemical spot test shall be no more than four Level 3 conditions.
 2. Colors for Metal Laboratory Casework Finish: Match existing cabinet colors.

2.6 HARDWARE

A. General: Provide laboratory casework manufacturer's standard, commercial-quality, heavy-duty hardware complying with requirements indicated for each type.
B. Hinges: Stainless-steel, 5-knuckle hinges complying with BHMA A156.9, Grade 1, with antifriction bearings and rounded tips. Provide 2 for doors 48 inches high or less and 3 for doors more than 48 inches high.

C. Hinged Door and Drawer Pulls: Solid aluminum, stainless steel, or chrome-plated brass back-mounted pulls. Provide 2 pulls for drawers more than 24 inches wide.
 1. Design: Rectangular loop pulls with rounded corners.
 2. Overall Size: 1 by 4-1/2 inches.

D. Door Catches: Dual, self-aligning, permanent magnet catches. Provide 2 catches on doors more than 48 inches high.

E.
 1. Provide Grade 1HD-100; for drawers not more than 6 inches high and 24 inches wide.
 2. Provide Grade 1HD-200; for drawers more than 6 inches high or 24 inches wide.
 3. Heavy Duty (Grade 1HD-100 and Grade 1HD-200): Full-extension, ball-bearing type.

F. Locks for Metal Cabinets: Cam or half-mortise type with 5-pin tumbler, brass with chrome-plated finish; complying with BHMA A156.11, Type E07281, E07261, E07111, or E07021.
 1. Provide a minimum of two keys per lock and two master keys.
 2. Provide on all drawers and doors.
 3. Keying: Key locks alike within each room; key each room separately.
 4. Master Key System: Key all locks to be operable by master key.

G. Adjustable Wall Shelf Supports: Surface-type steel standards and steel shelf brackets, with epoxy powder-coated finish, complying with BHMA A156.9, Types B04102 and B04112.

2.7 COUNTERTOPS, SHELVES AND SINKS

A. Countertops, General: Provide units with smooth surfaces in uniform plane free of defects. Make exposed edges and corners straight and uniformly beveled. Provide front and end overhang of 1 inch, with continuous drip groove on underside 1/2 inch from edge.

B. Sinks, General: Provide sizes indicated or laboratory casework manufacturer's closest standard size of equal or greater volume, as approved by Architect.
 1. Outlets: Provide with strainers and tailpieces, NPS 1-1/2, unless otherwise indicated.
 2. Overflows: For each sink except cup sinks, provide overflow of standard beehive or open-top design with separate strainer. Height 2 inches less than sink depth. Provide in same material as strainer.

C. Epoxy Countertops and Sinks:
 1. Countertop Fabrication: Fabricate with factory cutouts for sinks, holes for service fittings and accessories, and with butt joints assembled with epoxy adhesive and concealed metal splines.
 a. Countertop Configuration: Flat, 3/4 inch thick, with beveled edge and corners, and with drip groove and applied backsplash.
 b. Countertop Configuration: , 3/4-inch minimum thickness, with edge and corners, and with applied backsplash.
 c. Countertop Configuration: As indicated.
 d. Countertop Construction: Uniform throughout full thickness.
 2. Sink Fabrication: Molded in 1 piece with smooth surfaces, coved corners, and bottom sloped to outlet; 1/2-inch minimum thickness.
 a. Provide with polypropylene strainers and tailpieces.
 b. Provide sinks for drop-in installation with 1/4-inch thick lip around perimeter of sink.
 c. Provide integral sinks in epoxy countertops, bonded to countertops with invisible joint line.
 d. Provide manufacturer's recommended adjustable support system for table- and cabinet-type installations.
D. Stainless-Steel Countertops: Made from stainless-steel sheet, not less than 0.062-inch nominal thickness, with No. 4 satin finish.
1. Extend top down 1 inch at edges with a 1/2-inch return flange under frame. Apply heavy coating of heat-resistant, sound-deadening mastic to undersurface.
2. Form backsplash coved to and integral with top surface.
3. Provide raised (marine) edge around perimeter of countertops containing sinks; pitch two ways to sink to provide drainage without channeling or grooving.
4. Provide raised (marine) edge around perimeter of countertops at sinks, where indicated; pitch two ways to sink to provide drainage without channeling or grooving.
5. Punch holes for service fittings at factory.
6. Reinforce underside of countertop with channels or use thicker metal sheet where necessary to insure rigidity without deflection.
7. Weld shop-made joints.
8. Where field-made joints are required, provide hairline butt-joints mechanically bolted through continuous channels welded to underside at edges of joined ends. Keep field jointing to a minimum.
9. After fabricating and welding, grind surfaces smooth and polish as needed to produce uniform, directionally textured finish with no evidence of welds and free of cross scratches. Passivate and rinse surfaces; remove embedded foreign matter and leave surfaces clean.

E. Stainless-Steel Shelves: Made from stainless-steel sheet, not less than 0.050-inch nominal thickness, with No. 4 satin finish. Weld shop-made joints. Fold down front edge 3/4 inch; fold up back edge 3 inches. Provide integral stiffening brackets, formed by folding up ends 3/4 inch and welding to upturned front and back edges. After fabricating, grind welds smooth and polish as needed to produce uniform, directionally textured finish with no evidence of welds and free of cross scratches. Passivate and rinse surfaces; remove embedded foreign matter and leave surfaces clean.

F. Stainless-Steel Sinks: Made from stainless-steel sheet, not less than 0.050-inch nominal thickness. Fabricate with corners rounded and coved to at least 5/8-inch radius. Slope sink bottoms to outlet. Provide double-wall construction for sink partitions with top edge rounded to at least 1/2-inch diameter. Provide continuous butt-welded joints. After fabricating and welding, grind surfaces smooth and polish as needed to produce uniform finish with no evidence of welds and free of cross scratches. Passivate and rinse surfaces; remove embedded foreign matter and leave surfaces clean.
1. Punch holes for fittings at factory.
2. Provide with stainless-steel strainers and tailpieces.
3. Provide with integral rims except where located in stainless-steel countertops.
4. Apply 1/8-inch thick coating of heat-resistant, sound-deadening mastic to undersink surfaces.

G. Cup Sinks: Epoxy Stainless steel, 3-by-9-inch oval.
1. Provide with stainless-steel strainers and integral tailpieces.

2.8 LABORATORY ACCESSORIES

A. Pegboards: Polypropylene, epoxy, or phenolic-composite pegboards with removable polypropylene pegs and stainless-steel drip troughs with drain outlet.

2.9 WATER AND LABORATORY GAS SERVICE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Broen A/S.
2. Chicago Faucet Company (The); a Geberit company.
B. Service Fittings: Provide units that comply with SEFA 7, "Laboratory and Hospital Fixtures - Recommended Practices.” Provide fittings complete with washers, locknuts, nipples, and other installation accessories. Include wall and deck flanges, escutcheons, handle extension rods, and similar items.
 1. Provide units that comply with "Vandal-Resistant Faucets and Fixtures" recommendations in SEFA 7.

C. Materials: Fabricated from cast or forged red brass unless otherwise indicated.
 1. Reagent-Grade Water Service Fittings: Polypropylene, PVC, or PVDF for parts in contact with water.

D. Finish: Chromium plated.
 1. Provide chemical-resistant powder coating in laboratory casework manufacturer’s standard metallic brown, aluminum, white, or other color as approved by Architect.

E. Water Valves and Faucets: Provide units complying with ASME A112.18.1, with renewable seats, designed for working pressure up to 80 psig.
 1. Vacuum Breakers: Provide ASSE 1035 vacuum breakers on water fittings with serrated outlets.
 2. Aerators: Provide aerators on water fittings that do not have serrated outlets.

F. Ground-Key Cocks: Tapered core and handle of one-piece forged brass, ground and lapped, and held in place under constant spring pressure. Provide units designed for working pressure up to 40 psig, with serrated outlets.

G. Ball Valves: Chrome-plated ball and PTFE seals. Handle requires no more than 5 lbf to operate. Provide units designed for working pressure up to 75 psig, with serrated outlets.
 1. Where ball valves are indicated for fuel-gas use, provide locking safety handles that must be pushed in before being turned on[unless otherwise indicated].

H. Steam Valves: Stainless-steel seat and PTFE seat disc. Provide units designed for steam working pressure up to 20 psig, with serrated outlets.

I. Needle Valves: Provide units with renewable, self-centering, floating cones and renewable seats of stainless steel or Monel metal, with removable serrated outlets.
 1. Provide units designed for working pressure up to 60 psig.

J. Hand of Fittings: Furnish right-hand fittings unless fitting designation is followed by "L."

K. Remote-Control Valves: Provide needle valves, straight-throough or angle type as indicated for fume hoods and where indicated.

L. Handles: Provide three- or four-arm, forged-brass handles for valves unless otherwise indicated.
 1. Provide lever-type handles for ground-key cocks. Lever handle aligns with outlet when valve is closed and is perpendicular to outlet when valve is fully open.
 2. Provide lever-type handles for ball valves unless otherwise indicated. Lever handle aligns with outlet when valve is closed and is perpendicular to outlet when valve is fully open.
 3. Provide heat-resistant plastic handles for steam valves.
 4. Provide knurled, molded plastic handles for needle valves.

M. Service-Outlet Identification: Provide color-coded plastic discs with embossed identification, secured to each service-fitting handle to be tamper resistant. Comply with SEFA 7 for colors and embossed identification.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas, with Installer present, for compliance with requirements for installation tolerances, location of reinforcements, and other conditions affecting performance of laboratory casework.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF CABINETS
A. Comply with installation requirements in SEFA 2.3. Install level, plumb, and true; shim as required, using concealed shims. Where laboratory casework abuts other finished work, apply filler strips and scribe for accurate fit, with fasteners concealed where practical. Do not exceed the following tolerances:
 1. Variation of Tops of Base Cabinets from Level: 1/16 inch in 10 feet.
 2. Variation of Bottoms of Upper Cabinets from Level: 1/8 inch in 10 feet.
 3. Variation of Faces of Cabinets from a True Plane: 1/8 inch in 10 feet.
 5. Variation in Alignment of Adjacent Door and Drawer Edges: 1/16 inch.
B. Utility-Space Framing: Secure to floor with two fasteners at each frame. Fasten to partition framing, wood blocking, or metal reinforcements in partitions and to base cabinets.
C. Base Cabinets: Fasten cabinets to utility-space framing, partition framing, wood blocking, or reinforcements in partitions with fasteners spaced not more than 24 inches o.c. Bolt adjacent cabinets together with joints flush, tight, and uniform.
 1. Where base cabinets are installed away from walls, fasten to floor at toe space at not more than 24 inches o.c. and at sides of cabinets with not less than 2 fasteners per side.
D. Wall Cabinets: Fasten to hanging strips, masonry, partition framing, blocking, or reinforcements in partitions. Fasten each cabinet through back, near top, at not less than 24 inches o.c.
E. Install hardware uniformly and precisely. Set hinges snug and flat in mortises.
F. Adjust laboratory casework and hardware so doors and drawers align and operate smoothly without warp or bind and contact points meet accurately. Lubricate operating hardware as recommended by manufacturer.

3.3 INSTALLATION OF COUNTERTOPS
A. Comply with installation requirements in SEFA 2.3. Abut top and edge surfaces in one true plane with flush hairline joints and with internal supports placed to prevent deflection. Locate joints only where shown on Shop Drawings.
B. Field Jointing: Where possible, make in same manner as shop-made joints using dowels, splines, fasteners, adhesives, and sealants recommended by manufacturer. Prepare edges in shop for field-made joints.
 1. Use concealed clamping devices for field-made joints in plastic-laminate countertops. Locate clamping devices within 6 inches of front and back edges and at intervals not exceeding 24 inches. Tighten according to manufacturer's written instructions to exert a uniform heavy pressure at joints.
C. Fastening:
 1. Secure countertops, except for epoxy countertops, to cabinets with Z-type fasteners or equivalent, using two or more fasteners at each cabinet front, end, and back.
 2. Secure epoxy countertops to cabinets with epoxy cement, applied at each corner and along perimeter edges at not more than 48 inches o.c.
3. Where necessary to penetrate countertops with fasteners, countersink heads approximately 1/8 inch and plug hole flush with material equal to countertop in chemical resistance, hardness, and appearance.

D. Provide required holes and cutouts for service fittings.

E. Seal unfinished edges and cutouts in plastic-laminate countertops with heavy coat of polyurethane varnish.

F. Provide scribe moldings for closures at junctures of countertop, curb, and splash with walls as recommended by manufacturer for materials involved. Match materials and finish to adjacent laboratory casework. Use chemical-resistant, permanently elastic sealing compound where recommended by manufacturer.

G. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

3.4 INSTALLATION OF SINKS

A. Comply with installation requirements in SEFA 2.3.

B. Underside Installation of Epoxy Sinks: Use laboratory casework manufacturer's recommended adjustable support system for table- and cabinet-type installations. Set top edge of sink unit in sink and countertop manufacturers' recommended chemical-resistant sealing compound or adhesive and firmly secure to produce a tight and fully leakproof joint. Adjust sink and securely support to prevent movement. Remove excess sealant or adhesive while still wet and finish joint for neat appearance.

C. Semiflush Installation of Stainless-Steel Sinks: Before setting, apply sink and countertop manufacturers' recommended sealant under rim lip and along top. Remove excess sealant while still wet and finish joint for neat appearance.

D. Drop-in Installation of Epoxy Sinks: Rout groove in countertop to receive sink rim if not prepared in shop. Set sink in adhesive and fill remainder of groove with sealant or adhesive. Use procedures and products recommended by sink and countertop manufacturers. Remove excess adhesive and sealant while still wet and finish joint for neat appearance.

E. Drop-in Installation of Epoxy Cup Sinks: Rout groove in countertop to receive sink rim if not prepared in shop. Set sink in adhesive and fill remainder of groove with sealant or adhesive. Use procedures and products recommended by sink and countertop manufacturers. Remove excess adhesive and sealant while still wet and finish joint for neat appearance.

F. Surface Installation of Epoxy Cup Sinks: Set sink in sealant or adhesive. Use procedures and products recommended by sink and countertop manufacturers. Remove excess sealant or adhesive while still wet and finish joint for neat appearance.

3.5 INSTALLATION OF LABORATORY ACCESSORIES

A. Install accessories according to Shop Drawings, installation requirements in SEFA 2.3, and manufacturer's written instructions.

B. Securely fasten adjustable shelving supports, stainless-steel shelves, and pegboards to partition framing, wood blocking, or reinforcements in partitions.

C. Install shelf standards plumb and at heights to align shelf brackets for level shelves. Install shelving level and straight, closely fitted to other work where indicated.

D. Securely fasten pegboards to partition framing, wood blocking, or reinforcements in partitions.
3.6 INSTALLATION OF SERVICE FITTINGS

A. Comply with requirements in other Sections for installing water and laboratory gas service fittings and electrical devices.

B. Install fittings according to Shop Drawings, installation requirements in SEFA 2.3, and manufacturer's written instructions. Set bases and flanges of sink- and countertop-mounted fittings in sealant recommended by manufacturer of sink or countertop material. Securely anchor fittings to laboratory casework unless otherwise indicated.

3.7 CLEANING AND PROTECTING

A. Clean finished surfaces, touch up as required, and remove or refinish damaged or soiled areas to match original factory finish, as approved by Architect.

B. Protect countertop surfaces during construction with 6-mil plastic or other suitable water-resistant covering. Tape to underside of countertop at a minimum of 48 inches o.c.

3.8 SERVICE-FITTING SCHEDULE

A. Laboratory Gas Service Fitting, Type GF-[#]:
 2. Type of Fitting: [Turret] [Line mounted] [Flange type] [Remote-control turret] [Remote-control flange type].
 3. Outlets: [One] [Two, at 90 degrees] [Two, at 180 degrees] [Three] [Four].
 4. Outlet Type: [Straight] [Angled].
 5. Valve Type: [Ground-key cock] [Ball valve] [Needle valve].

END OF SECTION
SECTION 123616 - METAL COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes stainless-steel countertops, shelves, and sinks.

1.3 ACTION SUBMITTALS
 A. Submittal Compliance Form: If Basis-of-Design products are provided, Submittal Compliance Form may be submitted in lieu of required Product Data submittal. Ensure compliance with requirements included in Section 013300 "Submittal Procedures."
 B. Product Data: For each type of product.
 C. Shop Drawings: Include plans, sections, details, and attachments to other work. Detail fabrication and installation, including field joints.

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Deliver metal countertops only after casework has been completed in installation areas.
 B. Keep finished surfaces covered with polyethylene film or other protective covering during handling and installation.

1.5 FIELD CONDITIONS
 A. Field Measurements: Verify actual dimensions of construction to receive metal countertops by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MATERIALS
 A. Stainless-Steel Sheet: ASTM A 240/A 240M, Type 304.
 B. Sealant for Countertops: Manufacturer's standard sealant of characteristics indicated below that complies with applicable requirements in Section 079200 "Joint Sealants."
 1. Mildew-Resistant Joint Sealant: Mildew resistant, single component, nonsag, neutral curing, silicone.
 2. Joint Sealant: Single component, nonsag, neutral curing, silicone; Class 25.
 3. Color: As selected by Architect from manufacturer's full range.

2.2 STAINLESS-STEEL COUNTERTOPS
 A. Countertops: Fabricate from 0.062-inch- thick, stainless-steel sheet. Provide smooth, clean exposed tops and edges in uniform plane, free of defects. Provide front and end overhang of 1 inch over the base cabinets.
 2. Weld shop-made joints.
3. Sound deaden the undersurface with heavy-build mastic coating.
4. Extend the top down to provide a 1-inch-thick edge with a 1/2-inch return flange.
5. Form the backsplash coved to and integral with top surface, with a 1/2-inch-thick top edge and 1/2-inch return flange.
6. Provide raised (marine) edge around perimeter of tops containing sinks; pitch tops containing sinks two ways to provide drainage without channeling or grooving.

2.3 STAINLESS-STEEL FINISH

A. Grind and polish surfaces to produce uniform, directional satin finish matching No. 4 finish, with no evidence of welds and free of cross scratches. Run grain with long dimension of each piece. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces clean.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of metal countertops.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install metal countertops level, plumb, and true; shim as required, using concealed shims.
B. Field Jointing: Where possible, make field jointing in the same manner as shop jointing; use fasteners recommended by manufacturer. Prepare edges to be joined in shop so Project-site processing of top and edge surfaces is not required. Locate field joints where shown on Shop Drawings.
C. Secure tops to cabinets with Z- or L-type fasteners or equivalent; use two or more fasteners at each front, end, and back.
D. Abut top and edge surfaces in one true plane, with internal supports placed to prevent deflection.
E. Seal junctures of tops, splashes, and walls with mildew-resistant silicone sealant or another permanently elastic sealing compound recommended by countertop material manufacturer.

3.3 CLEANING AND PROTECTION

A. Repair or remove and replace defective work as directed on completion of installation.
B. Clean finished surfaces, touch up as required, and remove or refinish damaged or soiled areas to match original factory finish, as approved by Architect.
C. Protection: Provide 6-mil plastic or other suitable water-resistant covering over the countertop surfaces. Tape to underside of countertop at a minimum of 48 inches o.c. Remove protection at Substantial Completion.

END OF SECTION
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Pipes, fittings, and specialties.
2. Fire-department connections.

1.3 PERFORMANCE REQUIREMENTS

A. Sprinkler system design shall be approved by authorities having jurisdiction.
1. Margin of Safety for Available Water Flow and Pressure: 10% percent, including losses through water-service piping, valves, and backflow preventers.
2. Maximum Protection Area per Sprinkler: Per UL listing.

1.4 SUBMITTALS

A. Qualification Data: For qualified Installer.
B. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
C. Welding certificates.
D. Fire-hydrant flow test report.
E. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
F. Field quality-control reports.
G. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

1. NFPA 13, "Installation of Sprinkler Systems."
2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
3. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."
1.6 PROJECT CONDITIONS
A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:
 1. Notify Construction Manager no fewer than five days in advance of proposed interruption of sprinkler service.
 2. Do not proceed with interruption of sprinkler service without Construction Manager's written permission.

1.7 COORDINATION
A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS
A. Uncoated Steel Couplings: ASTM A 865, threaded.
C. Malleable- or Ductile-Iron Unions: UL 860.
D. Cast-Iron Flanges: ASME 16.1, Class 125.
E. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
F. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Tyco Fire & Building Products LP.
 c. Victaulic Company.
 2. Pressure Rating: 175 psig minimum.
 3. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.
G. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.3 COPPER TUBE AND FITTINGS

A. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

D. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

E. Copper Pressure-Seal Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Viega; Plumbing & Heating SysStandard: UL 213.
 3. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 4. NPS 2-1/2 to NPS 4: Cast-bronze fitting with EPDM-rubber O-ring seal in each end.

F. Grooved-Joint, Copper-Tube Appurtenances:
 1. Grooved-End, Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze castings.
 2. Grooved-End-Tube Couplings: To fit copper-tube dimensions, with design similar to AWWA C606. Include ferrous housing sections, EPDM-rubber gasket suitable for hot and cold water, and bolts and nuts.
 3. Description: Tee formed in copper tube according to ASTM F 2014.

2.4 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick ASME B16.21, nonmetallic and asbestos free.
 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicate.

2.5 LISTED FIRE-PROTECTION VALVES

a. Anvil International, Inc.

b. Victaulic Company.

B. Bronze Butterfly Valves:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 a. Global Safety Products, Inc.
 b. Milwaukee Valve Company.

C. Iron Butterfly Valves:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 a. Anvil International, Inc.
 b. Fivalco Inc.
 c. Global Safety Products, Inc.
d. Kennedy Valve; a division of McWane, Inc.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Pratt, Henry Company.
h. Sharj joint Piping Products.
i. Tyco Fire & Building Products LP. Victaulic Company.
j. <Insert manufacturer's name>.

2.6 SPECIALTY VALVES

A. Deluge Valves:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide [product indicated
 on Drawings] <Insert manufacturer's name; product name or designation> or comparable product
 by one of the following:
 a. BERMAD Control Valves.
 b. OCV Control Valves.
 c. Venus Fire Protection Ltd.

PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design
 calculations required in "Quality Assurance" Article.

3.2 Report test results promptly and in writing

3.3 4PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and
 arrangement of piping. Install piping as indicated, as far as practical.

 1. Deviations from approved working plans for piping require written approval from authorities
 having jurisdiction. File written approval with Architect before deviating from approved working
 plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and
 installation in NFPA 13.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment
 having NPS 2-1/2 and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized
 and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler
 piping is connected to standpipes.

J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain
 piping between fire-department connection and check valve. Install drain piping to and spill over floor
 drain or to outside building.
K. Install alarm devices in piping systems.

L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

N. Fill sprinkler system piping with water.

O. Install electric heating cables and pipe insulation on sprinkler piping in areas subject to freezing. Comply with requirements for heating cables in Section 210533 "Heat Tracing for Fire-Suppression Piping" and for piping insulation in Section 210700 "Fire-Suppression Systems Insulation."

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.4 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

N. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

O. Copper-Tubing Grooved Joints: Roll rounded-edge groove in end of tube according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join copper tube and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

P. Copper-Tubing, Pressure-Sealed Joints: Join copper tube and copper pressure-seal fittings with tools recommended by fitting manufacturer.

Q. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

1. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 INSTALLATION OF COVER SYSTEM FOR SPRINKLER PIPING

A. Install cover system, brackets, and cover components for sprinkler piping according to manufacturer's "Installation Manual" and with NFPA 13 or NFPA 13R for supports.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.8 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

END OF SECTION
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES
A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION
A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide [1-inch] <Insert dimension> annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.
C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."

3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.

4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: [Cast-iron wall sleeves with sleeve-seal system]
 [Galvanized-steel wall sleeves with sleeve-seal system] [Galvanized-steel-pipe sleeves with sleeve-seal system] [Sleeve-seal fittings] .
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 1) Concrete Slabs above Grade:
c. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves or PVC-pipe sleeves.

2. Interior Partitions:
 b.

END OF SECTION
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 B. Split-Plate, Stamped-Steel Type: With chrome-plated finish, hinge, and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
 B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

END OF SECTION
SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Bronze angle valves.
 2. Bronze ball valves.
 4. Bronze swing check valves.
 5. Iron swing check valves
 7. Lubricated plug valves.
 B. Related Sections:
 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 3. Division 33 water distribution piping Sections for general-duty and specialty valves for site construction piping.

1.3 DEFINITIONS
 A. CWP: Cold working pressure.
 B. EPDM: Ethylene propylene copolymer rubber.
 C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
 D. NRS: Nonrising stem.
 E. OS&Y: Outside screw and yoke.
 F. RS: Rising stem.

1.4 SUBMITTALS
 A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE
 A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
 B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.
 C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Set angle, gate, and globe valves closed to prevent rattling.
4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.
B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
C. Valve Sizes: Same as upstream piping unless otherwise indicated.

2.2 BRASS BALL VALVES

A. All Valves with Brass Trim:

2.3 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.
B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Lance Valves; a division of Advanced Thermal Systems, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

C. Two-Piece, Regular-Port, Bronze Ball Valves with Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. DynaQuip Controls.
 f. Hammond Valve.
 g. Lance Valves; a division of Advanced Thermal Systems, Inc.
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Regular.

D. Two-Piece, Regular-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Hammond Valve.
d. Milwaukee Valve Company.

2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Regular.

E. Three-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. DynaQuip Controls.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Red-White Valve Corporation.
 2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Three piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

F. Three-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Three piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.
2.4 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

 2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

 2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE or TFE.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kitz Corporation.
f. Milwaukee Valve Company.
g. NIBCO INC.
h. Red-White Valve Corporation.
i. Zy-Tech Global Industries, Inc.

2. Description:
a. Standard: MSS SP-80, Type 3.
b. CWP Rating: 300 psig (2070 kPa).
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: Bronze.

D. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Hammond Valve.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
a. Standard: MSS SP-80, Type 4.
b. CWP Rating: 300 psig (2070 kPa).
c. Body Design: Horizontal flow.
e. Ends: Threaded.
f. Disc: PTFE or TFE.

2.5 IRON SWING CHECK VALVES

A. Class 250, Iron Swing Check Valves with Metal Seats:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Crane Co.; Crane Valve Group; Crane Valves.
b. Crane Co.; Crane Valve Group; Jenkins Valves.
c. Crane Co.; Crane Valve Group; Stockham Division.
d. Hammond Valve.
e. Milwaukee Valve Company.
f. NIBCO INC.
g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
a. Standard: MSS SP-71, Type I.
b. CWP Rating: 500 psig (3450 kPa).
c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
e. Ends: Flanged.
f. Trim: Bronze.
g. Gasket: Asbestos free.

2.6 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. NIBCO INC.
 b. <Insert manufacturer's name>.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed, exterior lever and spring.

B. Class 125, Iron Swing Check Valves with Lever- and Weight-Closure Control:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed, exterior lever and weight.

2.7 BRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type I.
b. CWP Rating: 200 psig (1380 kPa).
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, RS Bronze Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig (1380 kPa).
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, NRS Bronze Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hammond Valve.
 b. Kitz Corporation.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Powell Valves.
 f. Red-White Valve Corporation.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 300 psig (2070 kPa).
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.
2.8 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following):
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Legend Valve.
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 j. Powell Valves.
 k. Red-White Valve Corporation.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.
 n. <Insert manufacturer's name>.

 2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

B. Class 250, NRS, Iron Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following):
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. NIBCO INC.
 d. <Insert manufacturer's name>.

 2. Description:
 a. Standard: MSS SP-70, Type I.
 b. CWP Rating: 500 psig (3450 kPa).
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

2.9 LUBRICATED PLUG VALVES

A. Class 250, Regular-Gland, Lubricated Plug Valves with Threaded Ends:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 2. Description:
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
 3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

B. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

END OF SECTION
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Fiberglass strut systems.
4. Pipe stands.
5. Equipment supports.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

C. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

D. Install lateral bracing with pipe hangers and supports to prevent swaying.

E. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

F. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

G. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

H. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 3. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

3.2 METAL FABRICATIONS

A. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

B. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
3.3 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING
A. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE
A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
E. Use carbon-steel and attachments for general service applications.
F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.
G. Use padded hangers for piping that is subject to scratching.
H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. C-Clamps (MSS Type 23): For structural shapes.
J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
K. Use instead of building attachments where required in concrete construction.

END OF SECTION
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

PART 2 - PRODUCTS

2.1 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: [Size letters according to ASME A13.1 for piping .

2.2 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch , 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link chain or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

END OF SECTION
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following plumbing piping services:
 1. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.4 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
C. Coordinate installation and testing of heat tracing.

1.6 SCHEDULING
A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.

2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.

2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

 a. For below-ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.6 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.

END OF SECTION
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials,
 and joining methods for specific services, service locations, and pipe sizes.
 B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping
 components shall be marked with "NSF-pw."

2.2 PVC PIPE AND FITTINGS
 A. PVC Socket Fittings: .
 B. PVC Schedule 80 Threaded Fittings: ASTM D 2464.

2.3 PIPING JOINING MATERIALS
 A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and
 asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.
 B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
 C. Solder Filler Metals: ASTM B 32, lead-free alloys.
 D. Flux: ASTM B 813, water flushable.
 E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty
 brazing unless otherwise indicated.
 F. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system
 manufacturer unless otherwise indicated.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping” and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."

C. Install shutoff valve immediately upstream of each dielectric fitting.

D. Install domestic water piping level and plumb.

E. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

I. Install piping to permit valve servicing.

J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

K. Install piping free of sags and bends.

L. Install fittings for changes in direction and branch connections.

M. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."

N. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

O. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
C. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

D. Joint Construction for Grooved-End, Ductile-Iron Piping: Make joints according to AWWA C606. Cut round-bottom grooves in ends of pipe at gasket-seat dimension required for specified (flexible or rigid) joint. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.

E. Joint Construction for Grooved-End Steel Piping: Make joints according to AWWA C606. [Square cut] [Roll] groove ends of pipe as specified. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.

F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 2. Support vertical piping and tubing at base and at each floor.
 3. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
 4. Install supports for vertical copper tubing every 10 feet.

E. Install supports for vertical copper tubing every 10 feet.

F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
2. NPS 1-1/2: 108 inches with 3/8-inch rod.
3. NPS 2: 10 feet with 3/8-inch rod.
4. NPS 2-1/2: 11 feet with 1/2-inch rod.
5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
7. NPS 6: 12 feet with 3/4-inch rod.
8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.

G. Install hangers for stainless-steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 5. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 6. NPS 6: 12 feet with 3/4-inch rod.
 7. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.

H. Install supports for vertical stainless-steel piping every 15 feet.

I. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 3. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 4. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 5. NPS 6: 48 inches with 3/4-inch rod.
 6. NPS 8: 48 inches with 7/8-inch rod.

J. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.

K. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.

L. Install hangers for vertical PEX piping every 48 inches.

M. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6: 48 inches with 3/4-inch rod.
 5. NPS 8: 48 inches with 7/8-inch rod.

N. Install supports for vertical PVC piping every 48 inches (1200 mm).

O. Install supports for vertical PP piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.

P. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.
3.5 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

3.6 IDENTIFICATION
A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
B. Label pressure piping with system operating pressure.

3.7 ADJUSTING
A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
 4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 6. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 7. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.8 CLEANING
A. Clean and disinfect potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.
 3. Secondary disinfection is required for projects constructed in phases before building is turned over to the owner, to prevent Legionella and other pathogens growth in standing domestic water system.

B. Clean non-potable domestic water piping as follows:
1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging procedures prescribed by authorities having jurisdiction or, if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.9 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 Annex G and NSF 14

1.2 PERFORMANCE REQUIREMENTS

1.3 Coordinate this article with Section 221116 "Domestic Water Piping."

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

1.4 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. FEBCO.
 c. Watts; a Watts Water Technologies company.
 3. Operation: Continuous-pressure applications.
 4. Size: 1/4-1 1/4".
 5. Body: Lead Free cast copper body for NPS 2 and smaller; that complies with AWWA C550 or that is FDA approved [steel with interior lining that complies with AWWA C550 or that is FDA approved] [stainless steel] for NPS 2-1/2 and larger.
 7. Configuration: Designed for horizontal, straight-through flow.
 8. Accessories:
 a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.

1.5 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Honeywell Water Controls.
 c. Leonard Valve Company.
 d. Powers; a division of Watts Water Technologies, Inc.
 e. Watts; a Watts Water Technologies company.

1.6 OUTLET BOXES

A. Icemaker Outlet Boxes:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 b. IPS Corporation.
 c. LSP Products Group, Inc.
 d. Oatey.

1.7 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

B. Moderate-Climate Wall Hydrants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Woodford Manufacturing Company.
 c. Zurn Industries, LLC.
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Pipe, tube, and fittings.
2. Encasement for underground metal piping.

B. Related Sections:
1. Section 221313 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.
2. Section 221329 "Sanitary Sewerage Pumps" for effluent and sewage pumps.
3. Section 226600 "Chemical-Waste Systems for Laboratory and Healthcare Facilities" for chemical-waste and vent piping systems.

1.3 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
1. Notify Construction Manager no fewer than five days in advance of proposed interruption of sanitary waste service.
2. Do not proceed with interruption of sanitary waste service without Construction Manager' written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. CISPI, Hubless-Piping Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
b. Ideal Tridon.
c. Mission Rubber Company; a division of MCP Industries, Inc.
d. Dallas Specialty & Mfg. Co
e. Tyler Pipe.

3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.3

2.4 ENCASEMENT FOR UNDERGROUND METAL PIPING

A. Standard: ASTM A 674 or AWWA C105/A 21.5.
B. Material: high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.
C. Form: tube.
D. Color: Black.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
D. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

3.3 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.

3.4 VALVE INSTALLATION

A. General valve installation requirements are specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 6. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 8. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

C. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.8 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping [NPS 4 and smaller] shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 2.

C. Aboveground, vent piping [NPS 4 and smaller] shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

D. Underground, soil, waste, and vent piping [NPS 4 and smaller] shall be the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

END OF SECTION
SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Handwash sinks.

PART 2 - PRODUCTS

2.1 HANDWASH SINKS
A. Handwash Sinks HS-1: Stainless steel, wall mounted.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 2. Basis-of-Design Product: Subject to compliance with requirements, provide [product indicated on Drawings] <Insert manufacturer's name; product name or designation> or comparable product by one of the following:
 a. Elkay Manufacturing Co.
 b. Just Manufacturing.
 3. Fixture:
 b. Type: Basin with radius corners, back for faucet, and support brackets.
 c. Nominal Size: 17 by 16 by 5 inches.
 4. Faucet: Chrome plated gooseneck spout with aerator.
 6. Waste Fittings: Chrome plated cast Brass 1-1/2" P-trap with cleanout, 1-1/2" waste arm to wall and wall flange.s.
 7. Support: ASME A112.6.1M, Type II, sink carrier.

2.2 GROUT
B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.
B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION
A. Install sinks level and plumb according to roughing-in drawings.
B. Install supports, affixed to building substrate, for wall-hung sinks.
C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.
D. Install water-supply piping with stop on each supply to each sink faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.
E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
F. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
G. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS
A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING
A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.
B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION
A. After completing installation of sinks, inspect and repair damaged finishes.
B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
C. Provide protective covering for installed sinks and fittings.
D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION
SECTION 226113 - COMPRESSED-AIR PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS
 A. Medical compressed-air piping systems include medical air, dental air, instrument air, and medical laboratory air.
 B. Nonmedical compressed-air piping systems include laboratory air piping systems.

1.3 QUALITY ASSURANCE
 A. Installer Qualifications:
 B. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code, Section IX, "Welding and Brazing Qualifications"; or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS
 A. Comply with NFPA 99 for medical air piping materials.
 B. Comply with ASME B31.9, "Building Services Piping," for laboratory air piping operating at 150 psig or less.
 C. Copper Medical Gas Tube: ASTM B 819, seamless, drawn temper, that has been manufacturer cleaned, purged, and sealed for medical gas service or according to CGA G-4.1 for oxygen service. Include standard color marking CA(50#) for medical compressed air in blue for Type L tube.
 D. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type that has been manufacturer cleaned, purged, and bagged for oxygen service according to CGA G-4.1.

2.2 JOINING MATERIALS
 A. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys.

2.3 VALVES
 A. General Requirements for Valves: Manufacturer cleaned, purged, and bagged according to CGA G-4.1 for oxygen service.

END OF SECTION
SECTION 226213 - VACUUM PIPING FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS
A. Medical vacuum piping systems include medical vacuum, WAGD, dental vacuum, HVE, and medical laboratory vacuum piping systems.
B. Nonmedical laboratory vacuum piping systems include laboratory low-vacuum and laboratory high-vacuum piping systems.

1.3 QUALITY ASSURANCE
A. Installer Qualifications:

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS
A. Comply with NFPA 99 for medical vacuum piping materials.

2.2 JOINING MATERIALS
A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

PART 3 - EXECUTION

3.1 PREPARATION
A. Cleaning of Medical Gas Tubing: If manufacturer-cleaned and -capped fittings or tubing is not available or if precleaned fittings or tubing must be recleaned because of exposure, have supplier or separate agency acceptable to authorities having jurisdiction perform the following procedures:
 1. Clean medical gas tube and fittings, valves, gages, and other components of oil, grease, and other readily oxidizable materials as required for oxygen service according to CGA G-4.1.
 2. Wash medical gas tubing and components in hot, alkaline-cleaner-water solution of sodium carbonate or trisodium phosphate in proportion of 1 lb of chemical to 3 gal. of water.
 a. Scrub to ensure complete cleaning.
 b. Rinse with clean, hot water to remove cleaning solution.

3.2 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of vacuum piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, vacuum producer sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Comply with NFPA 99 for installation of vacuum piping.
C. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and coordinate with other services occupying that space.
F. Install piping adjacent to equipment and specialties to allow service and maintenance.
G. Install vacuum piping with 1 percent slope downward in direction of flow.
H. Install nipples, unions, special fittings, and valves with pressure ratings same as or higher than piping pressure rating used in applications specified in "Piping Schedule" Article unless otherwise indicated.
I. Install eccentric reducers, if available, where vacuum piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
J. Provide drain leg and drain trap at end of each main and branch and at low points.
K. Install piping to permit valve servicing.
L. Install piping free of sags and bends.
M. Install fittings for changes in direction and for branch connections. Extruded-tee branch outlets in copper tubing may be made where specified.
N. Install medical vacuum piping from medical vacuum service connections specified in this Section, to equipment specified in Section 226219 "Vacuum Equipment for Laboratory and Healthcare Facilities," and to equipment specified in other Sections requiring medical vacuum service.
O. Connect vacuum piping to vacuum producers and to equipment requiring vacuum service.
P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 VALVE INSTALLATION
A. Install shutoff valve at each connection to and from vacuum equipment and specialties.

3.4 JOINT CONSTRUCTION
A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from outside of cleaned tubing and fittings before assembly.
C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

3.5 IDENTIFICATION
A. Install identifying labels and devices for laboratory vacuum piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."

3.6 PROTECTION
A. Protect tubing from damage.
B. Retain sealing plugs in tubing, fittings, and specialties until installation.

C. Clean tubing not properly sealed, and where sealing is damaged, according to "Preparation" Article.

END OF SECTION
SECTION 226600 - CHEMICAL-WASTE SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Piping specialties.

1.3 PERFORMANCE REQUIREMENTS
 A. Single-Wall Piping Pressure Rating: 10 feet head of water.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For chemical-waste specialties and to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.7 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. NFPA Compliance: Comply with NFPA 70, "National Electrical Code."

1.8 DELIVERY, STORAGE, AND HANDLING
 A. Deliver and store piping and specialties with sealing plugs in ends or with end protection.
 B. Do not store plastic pipe or fittings in direct sunlight.
 C. Protect pipe, fittings, and seals from dirt and damage.

1.9 PROJECT CONDITIONS
 A. Interruption of Existing Chemical-Waste Service: Do not interrupt chemical-waste service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary chemical-waste service according to requirements indicated:
 1. Do not proceed with interruption of chemical-waste service without Construction Manager's written permission.
1.10 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt
 inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000
 "Cast-in-Place Concrete."

PART 2 - PRODUCTS

2.1 SINGLE-WALL PIPE AND FITTINGS
 A. Adapters and Transition Fittings: Assemblies with combination of clamps, couplings, adapters, and
 gaskets; compatible with piping and system liquid; made for joining different piping materials.

2.2 JOINING MATERIALS
 A. Couplings: Assemblies with combination of clamps, gaskets, sleeves, and threaded or flanged parts;
 compatible with piping and system liquid; and made by piping manufacturer for joining system piping.
 B. Adapters and Transition Fittings: Assemblies with combination of clamps, couplings, adapters, gaskets,
 and threaded or flanged parts; compatible with piping and system liquid; and made for joining different
 piping materials.
 C. Flanges: Assemblies of companion flanges and gaskets complying with ASME B16.21 and compatible
 with system liquid, and bolts and nuts.
 D. Solvent Cement for Joining PP Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.3 PIPING SPECIALTIES
 A. Corrosion-Resistant Traps:
 1. Type: P-trap or drum trap.
 2. Size: NPS 1-1/2 or NPS 2, as required to match connected piping.
 3. PP: ASTM D 4101, with mechanical-joint pipe connections.
 B. PP Sink Outlets:

(DN 40) (178-mm-) EXECUTION

3.1 PIPING INSTALLATION
 A. Chemical-Waste Piping Inside the Building:
 1. Install piping next to equipment, accessories, and specialties to allow service and maintenance.
 2. Transition and special fittings with pressure ratings at least equal to piping pressure rating may be
 used unless otherwise indicated.
 3. Flanges may be used on aboveground piping unless otherwise indicated.
 4. Install underground fiberglass piping according to ASTM D 3839.
 5. Install piping in concealed locations unless otherwise indicated and except in equipment rooms
 and service areas.
 6. Install piping indicated to be exposed and piping in equipment rooms and service areas at right
 angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated
 otherwise.
 7. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 8. Install piping at indicated slopes.
 9. Install piping free of sags and bends.
 10. Install fittings for changes in direction and branch connections.
11. Verify final equipment locations for roughing-in.
12. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
13. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

3.2 PIPING SPECIALTY INSTALLATION

A. Embed floor drains in 4-inch minimum depth of concrete around bottom and sides. Comply with requirements in [Section 033000 "Cast-in-Place Concrete"] [Section 033053 "Miscellaneous Cast-in-Place Concrete"] for concrete.

B. Fasten grates to drains if indicated.

C. Set floor drains with tops flush with pavement surface.

D. Install cleanouts and riser extension from sewer pipe to cleanout at grade. Use fittings of same material as sewer pipe at branches for cleanouts and riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in pipe.

1. Set cleanout bodies in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade. Set cleanout plugs in concrete pavement with tops flush with pavement surface. Comply with requirements in [Section 033000 "Cast-in-Place Concrete"] [Section 033053 "Miscellaneous Cast-in-Place Concrete"] for formwork, reinforcement, and concrete requirements.
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.
D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
E. Multispeed Motors: Separate winding for each speed.
F. Rotor: Random-wound, squirrel cage.
G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
H. Temperature Rise: Match insulation rating.
I. Insulation: Class F.
J. Code Letter Designation:
1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

B. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
 B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
 C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
 D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 GROUT
 B. Characteristics: Nonshrink; recommended for interior and exterior applications.
 C. Design Mix: 5000-psi, 28-day compressive strength.
 D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION
 A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

END OF SECTION
SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
 B. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.
 D. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
 A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
 B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
 B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
f. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
g. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge.
 g. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated finish.
 h. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge.
 i. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping: One-piece, floor-plate type.
 2. Existing Piping: Split-casting, floor-plate type.

END OF SECTION
SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze ball valves.
 2. Iron ball valves.
 4. Iron swing check valves.
 5. Bronze gate valves.
 7. Bronze globe valves.
 8. Iron globe valves.

B. Related Sections:
 1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. OS&Y: Outside screw and yoke.
F. RS: Rising stem.
G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from a single source from a single manufacturer.
B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
5. Set butterfly valves closed or slightly open.
6. Block check valves in either closed or open position.

B. Use the following precautions during storage:
1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to HVAC valve schedule articles for applications of valves.
B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
C. Valve Sizes: Same as upstream piping unless otherwise indicated.
D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 and smaller except plug valves.
 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug-valve head.
E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 1. Gate Valves: With rising stem.
 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Grooved: With grooves according to AWWA C606.
 4. Threaded: With threads according to ASME B1.20.1.
G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
i. Red-White Valve Corporation.

j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

k. <Insert manufacturer's name>.

2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

B. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Hammond Valve.
 d. Lance Valves; a division of Advanced Thermal Systems, Inc.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 h. <Insert manufacturer's name>.
 2. Description:
 b. CWP Rating: 200 psig.
 e. Port: Full.

2.3 IRON BALL VALVES

A. Class 125, Iron Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Kitz Corporation.
 d. Sure Flow Equipment Inc.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 f. <Insert manufacturer's name>.
 2. Description:
 b. CWP Rating: 200 psig.
d. Body Material: ASTM A 126, gray iron.
e. Ends: Flanged.
f. Seats: PTFE or TFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel.
i. Port: Full.

2.4 BRONZE LIFT CHECK VALVES

A. Class 125, Lift Check Valves with Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. <Insert manufacturer's name>.

2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Lift Check Valves with Nonmetallic Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. Mueller Steam Specialty; a division of SPX Corporation.
 f. NIBCO INC.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. <Insert manufacturer's name>.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 e. Ends: Threaded.
 f. Disc: NBR, PTFE, or TFE.

2.5 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
f. Kitz Corporation.
g. Milwaukee Valve Company.
h. NIBCO INC.
i. Powell Valves.
j. Red-White Valve Corporation.
k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
l. Zy-Tech Global Industries, Inc.
m. <Insert manufacturer's name>.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 150, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corporation.
 i. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.6 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve
 e. |
 f. |
 g. |
 h. |
 i. |
 j. |
 k. |
 l. |
2. Description:
 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Composition.
 h. Seat Ring: Bronze.
 i. Disc Holder: Bronze.
 j. Disc: PTFE or TFE.
 k. Gasket: Asbestos free.

2.7 Crane CoMueller Steam SpecialtyCrane CoVal-Matic Valve & Manufacturing CorpAPCO Willamette Valve and Primer CorporationBRONZE GATE VALVES

A. Class 125, NRS Bronze Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l. Zy-Tech Global Industries, Inc

m. |

2. Description:
 a. Standard: MSS SP-80, Type 1.
b. CWP Rating: 200 psig.
d. Ends: Threaded or solder joint.
e. Stem: Bronze.
f. Disc: Solid wedge; bronze.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 125, RS Bronze Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
 c. Crane Co.; Crane Valve Group; Jenkins Valves.
 d. Crane Co.; Crane Valve Group; Stockham Division.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.
 l. <Insert manufacturer's name>.
2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

C. Class 150, RS Bronze Gate Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Zy-Tech Global Industries, Inc.
2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
2.8 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co
 d. Flo Fab Inc.
 e. Hammond Valve.
 f.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j.
 k. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 l.
 m.

 2. Description:
 a. Standard: MSS SP-70, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Disc: Solid wedge.
 h. Packing and Gasket: Asbestos free.

2.9 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.
 c. Hammond Valve.
 d. Kitz Corporation.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Powell Valves.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 j. Zy-Tech Global Industries, Inc.

 2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig.
 d. Ends: Threaded or solder joint.
 e. Stem and Disc: Bronze.
 f. Packing: Asbestos free.
g. Handwheel: Malleable iron, bronze, or aluminum.

B. Class 150, Bronze Globe Valves with Nonmetallic Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Hammond Valve.
 c. Kitz Corporation.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Powell Valves.
 g. Red-White Valve Corporation.
 h. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 i. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 300 psig.
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

2.10 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Powell Valves.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.

2. Description:
 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig.
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball, butterfly, gate, or plug valves.
 2. Throttling Service except Steam: Globe, ball, or butterfly valves.
 3. Throttling Service, Steam: Globe or butterfly valves.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.

3.5 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Ball Valves: Two piece, full port, bronze with bronze or stainless-steel trim.
 3. Bronze Swing Check Valves: Class 125, bronze disc.
 4. Bronze Gate Valves: Class 125, NRS.
 5. Bronze Globe Valves: Class 125, bronze disc.
3.6 LOW-PRESSURE STEAM VALVE SCHEDULE (15 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:
1. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
2. Bronze Swing Check Valves: Class 150, bronze disc.
3. Bronze Gate Valves: Class 150, RS.

3.7 HIGH-PRESSURE STEAM VALVE SCHEDULE (MORE THAN 15 PSIG)

A. Pipe NPS 2 and Smaller:
1. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
2. Bronze Swing Check Valves: Class 150, bronze disc.
3. Bronze Gate Valves: Class 150, RS, bronze.

3.8 STEAM-CONDENSATE VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
1. Ball Valves: Two piece, full port, bronze with bronze or stainless-steel trim.
2. Bronze Swing Check Valves: Class 150, bronze disc.
3. Bronze Gate Valves: Class 150, RS.

END OF SECTION
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Fastener systems.

B. Related Sections:
 1. Section 232113 "Hydronic Piping".
 2. Section 232213 "Steam and Condensate Piping and Specialties".
 3. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

2.2 THERMAL-HANGER SHIELD INSERTS

A. Basis-of-Design Product: Subject to compliance with requirements, provide [product indicated on Drawings] <Insert manufacturer's name; product name or designation> or comparable product by one of the following:
 1. American Mechanical Insulation Sales, Inc. (AMIS Series)
 2. Carpenter & Paterson, Inc.
 4. ERICO International Corporation.
 6. PHS Industries, Inc.
 7. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 8. Piping Technology & Products, Inc.
 9. Rilco Manufacturing Co., Inc.
 10. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig or ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.3 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
2.4 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

E. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

F. Install lateral bracing with pipe hangers and supports to prevent swaying.

G. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, [NPS 2-1/2] <Insert size> and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

H. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

I. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

J. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
2. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
3. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to [1-1/2 inches] <Insert dimension>.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in [Section 099113 "Exterior Painting"] [Section 099123 "Interior Painting"] [and] [Section 099600 "High Performance Coatings."]
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

END OF SECTION
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Valve tags.

1.3 COORDINATION
 A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
 B. Coordinate installation of identifying devices with locations of access panels and doors.
 C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
 A. Metal Labels for Equipment:
 1. Material and Thickness: Brass, 0.032-inch Stainless steel, 0.025-inch Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
 B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 PIPE LABELS
 A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
 B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
 C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.3 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
B. Letter Color: Black.
C. Background Color: White.
D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch Stainless steel, 0.025-inch Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link or beaded chain.
B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 1. Size: Approximately 4 by 7 inches.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Section 099123 "Interior Painting" or Section 099600 "High Performance Coatings"

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:
 1. Heating Water Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.
 2. Low-Pressure Steam Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.
 3. High-Pressure Steam Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.
 4. Steam Condensate Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.

3.3 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Yellow: For hot-air supply ducts.
 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 a. 1-1/2 inches, round.

2. Valve-Tag Color:
 a. Natural.

3. Letter Color:
 a. Black.

END OF SECTION
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 2. Balancing Hydronic Piping Systems:
 a. Variable-flow hydronic systems.

1.3 DEFINITIONS
C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
D. Certified TAB reports.
E. Sample report forms.
F. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.5 QUALITY ASSURANCE
A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC[NEBBorTABB
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABCNEBBor TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABCNEBBor TABB as a TAB technician.
B. TAB Conference: Meet with Architect Owner Construction Manager on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.

1. Agenda Items:
 b. The TAB plan.
 c. Coordination and cooperation of trades and subcontractors.
 d. Coordination of documentation and communication flow.

C. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. TAB Report Forms: Use standard TAB contractor's forms approved by Construction Manager.

E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.6 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 233113 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
G. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.
B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Automatic temperature-control systems are operational.
 2. Balance, smoke, and fire dampers are open.
 3. Isolating and balancing valves are open and control valves are operational.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," and Section 230719 "HVAC Piping Insulation."
C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
B. Prepare schematic diagrams of systems' "as-built" duct layouts.
C. For variable-air-volume systems, develop a plan to simulate diversity.
D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
E. Check for airflow blockages.
F. Check for proper sealing of air-handling-unit components.
G. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
b. Measure static pressure directly at the fan outlet or through the flexible connection.
c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.

3. Obtain approval from Architect/Owner/Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

4. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 1. Measure airflow of submain and branch ducts.
 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.
 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 3. Measure total system airflow. Adjust to within indicated airflow.
4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.

5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.

6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.

8. Record final fan-performance data.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 3. Set system controls so automatic valves are wide open to heat exchangers.
 4. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

B. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

C. Set calibrated balancing valves, if installed, at calculated presettings.

D. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

E. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

F. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.
3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.10 PROCEDURES FOR STEAM SYSTEMS

A. Measure and record upstream and downstream pressure of each piece of equipment.

B. Check settings and operation of self-contained control valves. Record final settings.

C. Check settings and operation of new safety valve. Record settings.

D. Verify the operation of new steam trap.

3.11 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
1. Measure and record the operating speed, airflow, and static pressure of each fan.
2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
3. Check the refrigerant charge.
4. Check the condition of filters.
5. Check the condition of coils.
6. Check the operation of the drain pan and condensate-drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
4. Balance each air outlet.

3.12 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Heating-Water Flow Rate: Plus or minus 10 percent.
4. Cooling-Water Flow Rate: Plus or minus 10 percent.
3.13 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare [weekly] [biweekly] [monthly] <Insert time interval> progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.14 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB supervisor who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
f. Inlet vane settings for variable-air-volume systems.
g. Settings for supply-air, static-pressure controller.
h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.
2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.

F. Fan Test Reports: For supply, return, and exhaust fans, include the following:
1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
d. Model number and size.
e. Manufacturer's serial number.
f. Arrangement and class.
g. Sheave make, size in inches, and bore.
h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:
a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
a. Total airflow rate in cfm.
b. Total system static pressure in inches wg.
c. Fan rpm.
d. Discharge static pressure in inches wg.
e. Suction static pressure in inches wg.

G. Air-Terminal-Device Reports:
1. Unit Data:
a. System and air-handling unit identification.
b. Location and zone.
c. Apparatus used for test.
d. Area served.
e. Make.
f. Number from system diagram.
g. Type and model number.
h. Size.
i. Effective area in sq. ft..

2. Test Data (Indicated and Actual Values):
a. Air flow rate in cfm.
b. Air velocity in fpm.
c. Preliminary air flow rate as needed in cfm.
d. Preliminary velocity as needed in fpm.
e. Final air flow rate in cfm.
f. Final velocity in fpm.
g. Space temperature in deg F.

H. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
1. Unit Data:
a. System and air-handling-unit identification.
b. Location and zone.
c. Room or riser served.
d. Coil make and size.
e. Flowmeter type.
2. Test Data (Indicated and Actual Values):
a. Air flow rate in cfm.
b. Entering-water temperature in deg F.
c. Leaving-water temperature in deg F.
d. Water pressure drop in feet of head or psig.
e. Entering-air temperature in deg F.
f. Leaving-air temperature in deg F.

3.15 INSPECTIONS

A. Initial Inspection:

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Measure water flow of at least 5 percent of terminals.
 c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 d. Verify that balancing devices are marked with final balance position.
 e. Note deviations from the Contract Documents in the final report.

B. Final Inspection:

1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by [Architect] [Owner] [Construction Manager] [Commissioning Authority].
2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of ArchitectOwnerConstruction Manager.
3. ArchitectOwnerConstruction Managershall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

END OF SECTION
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY
A. Related Sections:
 1. Division 23 Section 230719 "HVAC Piping Insulation."

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

1.3 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.4 COORDINATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.5 SCHEDULING
A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
c. Knauf Insulation; Friendly Feel Duct Wrap.
d. Manson Insulation Inc.; Alley Wrap.
e. Owens Corning; SOFTR All-Service Duct Wrap.

F. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.
 1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; Super Firetemp M.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.
 1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.
 c. Nelson Fire Stop Products; Nelson FSB Flameshield Blanket.
 d. Thermal Ceramics; FireMaster Duct Wrap.
 e. 3M; Fire Barrier Wrap Products.
 f. Unifrax Corporation; FyreWrap.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide products by one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, provide products one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. PVC Jacket Adhesive: Compatible with PVC jacket.
1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
 d. Speedline Corporation; Polycy VP Adhesive.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide products by one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide products by one of the following:
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

3. Color: White jackets based on system.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide products by one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.

2.6 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.

3. Thickness: 11.5 mils.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lbf/inch in width.

7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide products by one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.

3. Thickness: 6.5 mils.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lbf/inch in width.
7. **FSK Tape Disks and Squares:** Precut disks or squares of FSK tape.

2.7 SECUREMENTS

A. Bands:
1. **Products:** Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
2. **Aluminum:** ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal.
3. **Springs:** Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. Insulation Pins and Hangers:
1. **Capacitor-Discharge-Weld Pins:** Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 a. **Products:** Subject to compliance with requirements, provide products by one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.
2. **Cupped-Head, Capacitor-Discharge-Weld Pins:** Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, [0.106-inch-] [0.135-inch-] diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 a. **Products:** Subject to compliance with requirements, provide products by one of the following:
 1) AGM Industries, Inc.; CHP-1.
 2) GEMCO; Cupped Head Weld Pin.
 3) Midwest Fasteners, Inc.; Cupped Head.
 4) Nelson Stud Welding; CHP.
3. **Metal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, provide products by one of the following:
 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 b. **Baseplate:** Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. **Spindle:** [Copper- or zinc-coated, low-carbon steel] [Aluminum] [Stainless steel], fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
4. **Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, provide products by one of the following:
 1) GEMCO; Nylon Hangers.
 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
c. Spindle: Nylon, 0.106-inch-diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel, aluminum, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

 a. Products: Subject to compliance with requirements, provide products by one of the following:
 1) AGM Industries, Inc.; RC-150.
 2) GEMCO; R-150.
 3) Midwest Fasteners, Inc.; WA-150.
 4) Nelson Stud Welding; Speed Clips.

 b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

6. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) GEMCO.
 2) Midwest Fasteners, Inc.

2.8 CORNER ANGLES

A. Aluminum Corner Angles: [0.040 inch] <Insert dimension> thick, minimum 1 by 1 inch, aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14.

B. Stainless-Steel Corner Angles: [0.024 inch] <Insert dimension> thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, [Type 304] [or] [Type 316].

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.
B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

NOTES:
- **SmithGroupJJR 20354.001**
- **Wayne State University**
- **Elliman Building - KCI Relocation**
- **WSU Project No. 629-247637**
- **04DEC15 BIDS**
3.6 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.8 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 1. Flat Acrylic Finish: [Two] <Insert number> finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.9 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed outdoor air.
 3. Indoor, exposed supply located in unconditioned space.
 4. Indoor, concealed return located in unconditioned space.
 5. Indoor, exposed return located in unconditioned space.
 6. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 7. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:
 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 2. Factory-insulated flexible ducts.
 3. Factory-insulated plenums and casings.
 4. Flexible connectors.
 5. Vibration-control devices.
 6. Factory-insulated access panels and doors.
3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, round, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, round outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, round, exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Concealed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Concealed, rectangular, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

G. Concealed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

H. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

I. Conceded, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket orboard; thickness as required to achieve 2-hour fire rating.

J. Concealed, supply-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

K. Conceded, return-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

L. Concealed, outdoor-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

M. Concealed, exhaust-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

N. Exposed, round supply-air duct insulation shall be one of the following:

O. Exposed, round return-air duct insulation shall be one of the following:

P. Exposed, round outdoor-air duct insulation shall be one of the following:

Q. Exposed, round exhaust-air duct insulation shall be one of the following:

R. Exposed, rectangular, supply-air duct insulation shall be one of the following:

S. Exposed, rectangular, return-air duct insulation shall be one of the following:

v.09-09 (R 05-12)

T. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:

U. Exposed, rectangular, exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

V. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket orboard; thickness as required to achieve 2-hour fire rating.

W. Exposed, supply-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

X. Exposed, return-air plenum insulation shall be one of the following:

Y. Exposed, exhaust-air plenum insulation shall be one of the following:

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. PVC: 20 mils thick.

END OF SECTION
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following HVAC piping systems:
 1. Heating hot-water piping, indoors.
 2. Steam and steam condensate piping.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.
C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 2. Sheet Form Insulation Materials: 12 inches square.
 5. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
C. Coordinate installation and testing of heat tracing.
1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Calcium Silicate:
 1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:
 a. Industrial Insulation Group (IIG); Thermo-12 Gold.
 b. <Insert manufacturer's name; product name or designation>.
 2. Preformed Pipe Sections: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
 3. Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
 4. Prefabricated Fitting Covers: Comply with ASTM C 450 and ASTM C 585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

G. Cellular Glass: Inorganic, combustible, foam or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:
 a. Pittsburgh Corning Corporation; Foamglas.
 b. <Insert manufacturer's name; product name or designation>.
 2. Block Insulation: ASTM C 552, Type I.
 3. Special-Shaped Insulation: ASTM C 552, Type III.
 4. Board Insulation: ASTM C 552, Type IV.
 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 6. Preformed Pipe Insulation with Factory-Applied [ASJ] [ASJ-SSL]: Comply with ASTM C 552, Type II, Class 2.
 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type [I] [II with factory-applied vinyl jacket] [III with factory-applied FSK jacket] [III with factory-applied FSP jacket]. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.

I. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Fibrex Insulations Inc.; Coreplus 1200.
 b. Johns Manville; Micro-Lok.
 c. Knauf Insulation; 1000-Degree Pipe Insulation.
 d. Manson Insulation Inc.; Alley-K.
 e. Owens Corning; Fiberglas Pipe Insulation.
 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, without factory-applied jacket.
 3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, without factory-applied jacket.

J. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory-applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Knauf Insulation; Permawick Pipe Insulation.
 b. Owens Corning; VaporWick Pipe Insulation.

K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJFSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; CrimpWrap.
 b. Johns Manville; MicroFlex.
 c. Knauf Insulation; Pipe and Tank Insulation.
 d. Manson Insulation Inc.; AK Flex.
 e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

 1. Products: Subject to compliance with requirements, provide one of the following:

a. Ramco Insulation, Inc.; Super-Stik.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Thermokote V.

 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 290.
 d. Mon-Eco Industries, Inc.; 22-30.
 e. Vimasco Corporation; 760.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 1. Products: Subject to compliance with requirements, provide one of the following:
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
2.4 SEALANTS

A. Joint Sealants:
1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Joint Sealants for Polystyrene Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 d. Mon-Eco Industries, Inc.; 44-05.

3. Materials shall be compatible with insulation materials, jackets, and substrates.
4. Permanently flexible, elastomeric sealant.
5. Service Temperature Range: Minus 100 to plus 300 deg F.
6. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
2.5 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. <Insert manufacturer's name; product name or designation>.

B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands/sq. in., in a Leno weave, for pipe.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; Elastafab 894.

2.6 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. Metal Jacket:
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 1. Products: Subject to compliance with requirements, provide one of the following:
 [available products that may be incorporated into the Work include, but are not limited to, the following]:
a. Dow Chemical Company (The); Saran 560 Vapor Retarder Film.
b. <Insert manufacturer's name; product name or designation>.

2.7 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Products: Subject to compliance with requirements, [provide the following] [provide one of the following] [available products that may be incorporated into the Work include, but are not limited to, the following]:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.
 e. <Insert manufacturer's name; product name or designation>.
2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

A. Bands:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch thick, 3/4 inch wide with wing seal.
3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 3/4 inch wide with wing seal or closed seal.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
 B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

3.3 GENERAL INSTALLATION REQUIREMENTS
 A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
 B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
 C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
 D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
 E. Install multiple layers of insulation with longitudinal and end seams staggered.
 F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
 G. Keep insulation materials dry during application and finishing.
 H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
 I. Install insulation with least number of joints practical.
J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.
B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CALCIUM SILICATE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure single-layer insulation with stainless-steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
 2. Install two-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with wire spaced at 12-inch intervals. Secure outer layer with stainless-steel bands at 12-inch intervals.
 3. Apply a skim coat of mineral-fiber, hydraulic-setting cement to insulation surface. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth or tape. Overlap edges at least 1 inch. Apply finish coat of lagging adhesive over glass cloth or tape. Thin finish coat to achieve smooth, uniform finish.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

4. Finish flange insulation same as pipe insulation.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed insulation sections of insulation are not available, install mitered sections of calcium silicate insulation. Secure insulation materials with wire or bands.
3. Finish fittings insulation same as pipe insulation.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
2. Install insulation to flanges as specified for flange insulation application.
3. Finish valve and specialty insulation same as pipe insulation.

3.7 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
3.8 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.10 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

E. Where PVDC jackets are indicated, install as follows:
1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.
3.11 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in S Section 099123 “Interior Painting.”
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

A. Heating-Hot-Water Supply and Return, 200 Deg F and Below:
 1. NPS 12 and Smaller: Insulation shall be one of the following:
 b. Mineral-Fiber, Preformed Pipe, Type I: 1 inchthick.

B. Steam and Steam Condensate, 350 Deg F and Below:
 1. NPS 3/4 and Smaller: Insulation shall be one of the following:
 a. Calcium Silicate: 2 inchthick.
 b. Cellular Glass: 2 inchthick.
 c. Mineral-Fiber, Preformed Pipe, Type I or II: 1-1/2 inches thick.
 2. NPS 1 and Larger: Insulation shall be one of the following:
 a. Calcium Silicate: 3 inchthick.
 b. Cellular Glass: 3 inches thick.
 c. Mineral-Fiber, Preformed Pipe, Type I or II or Pipe and Tank Insulation: 3 inches thick.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.
 2. Aluminum, Smooth: 0.016 inch thick.

D. Piping, Exposed:
 1. None.
 2. Aluminum, Smooth: 0.016 inch thick.

END OF SECTION
SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for existing terminal cooling units controls.

B. Related Sections:
 1. Section 230993 "Sequence of Operations for HVAC Controls".
 2. Section 262923 "Variable Frequency Motor Controllers".
 3. Siemens Control system installation specification “Electrical Installation and Wiring for HVAC Temperature & Lab Controls” on Siemens control drawings.

1.3 DEFINITIONS

A. DDC: Direct digital control.

B. I/O: Input/output.

C. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.

D. MS/TP: Master slave/token passing.

E. PC: Personal computer.

F. PID: Proportional plus integral plus derivative.

G. RTD: Resistance temperature detector.

1.4 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:
 1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
 2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
 3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
 4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
 5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
 6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
 7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
 8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 a. Water Temperature: Plus or minus 1 deg F.
 b. Water Flow: Plus or minus 5 percent of full scale.
c. Water Pressure: Plus or minus 2 percent of full scale.
d. Space Temperature: Plus or minus 1 deg F.
e. Ducted Air Temperature: Plus or minus 1 deg F.
f. Outside Air Temperature: Plus or minus 2 deg F.
g. Dew Point Temperature: Plus or minus 3 deg F.
h. Temperature Differential: Plus or minus 0.25 deg F.
i. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
j. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
k. Airflow (Terminal): Plus or minus 10 percent of full scale.
l. Air Pressure (Space): Plus or minus 0.01-inch wg.
m. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
n. Electrical: Plus or minus 5 percent of reading.

1.5 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment.
 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 4. Details of control panel faces, including controls, instruments, and labeling.
 5. Written description of sequence of operation.
 6. Schedule of dampers including size, leakage, and flow characteristics.
 7. Schedule of valves including flow characteristics.
 8. DDC System Hardware:
 a. Wiring diagrams for control units with termination numbers.
 b. Schematic diagrams and floor plans for field sensors and control hardware.
 c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
 9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
 10. Controlled Systems:
 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 c. Written description of sequence of operation including schematic diagram.
 d. Points list.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 2. Interconnection wiring diagrams with identified and numbered system components and devices.
 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 5. Calibration records and list of set points.

B. Software and Firmware Operational Documentation: Include the following:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.
 5. Software license required by and installed for DDC workstations and control systems.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with ASHRAE 135 for DDC system components.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

B. System Software: Update to latest version of software at Project completion.

1.9 COORDINATION

A. Coordinate location of thermostats, humidistsats, and other exposed control sensors with plans and room details before installation.

B. Coordinate equipment with Section 283111 "Digital, Addressable Fire-Alarm System" to achieve compatibility with equipment that interfaces with that system.

C. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

D. Coordinate equipment with Section 262416 "Panelboards" to achieve compatibility with starter coils and annunciation devices.

E. Refer to Section 262923 for "Variable-Frequency Motor Controllers".

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. The following are approved ACS manufacturers and product lines:
 1. Siemens - Apogee/Desigo
B. The ACS shall be a completely digital system, with electric actuation, manufactured and provided by a single manufacturer.

2.2 GENERAL

A. Materials shall be new, unused and free from defects and imperfections.

B. The ACS shall be stand-alone for each individual laboratory or laboratory support space. System shall not use or rely on information from controllers in other laboratory areas or from outside laboratory space to control functions within its laboratory.

C. Unless indicated elsewhere herein, the lab airflow control system shall use volumetric offset to maintain room pressurization. Offset airflow requirement is indicated for each lab on Room Air FlowBalance schedule on M4 drawings.

D. Control wiring shall meet requirements of specification of the Building Automation System (BAS).

E. Control panels shall be located near entry to each lab or mounted on air terminal(s) serving space. Coordinate location of control panel with all trades to provide access to panel for maintenance. Provide communications jack as part of or adjacent to space temperature sensor to allow communication between laptop computer and control panel. Provide one control panel for each area or suite as indicated.

2.3 AIR TERMINAL DEVICES

A. SINGLE BLADE DAMPER
1. Basis of design: Siemens LGE, LGS Series
2. Terminal/flow package will require AMCA610 Certification
3. Terminals shall have a single blade damper for airflow adjustment and shall provide the individual airflow capacities indicated in the project airflow schedules. Terminal airflow control shall be pressure independent using actual airflow measurement feedback as an integral part of a closed loop control process. Units not conforming to all construction and performance criteria listed herein will be rejected
4. Terminal units shall have been tested as a complete system (terminal units, actuation, flow sensor/transmitter, controls), prior to bid
5. Minimum airflow sensor measurement accuracy shall be +/- 5% of actual airflow over the entire design airflow range of each air terminal. Airflow measurement accuracy substantiation by a qualified independent test agency shall be available upon request.
6. Airflow transmitter shall be factory mounted on the terminal and shall include the necessary signal conditioning/transmitter instrumentation to provide an output proportional to the velocity pressure. Transmitter shall have an accuracy of at least +/- 0.5% of the transmitter range and a drift no greater than 0.5% full scale/year. Transmitters shall have an appropriate range and resolution for effectively measuring the required flows. High and low limits shall be fully adjustable.
7. Airflow transmitters not meeting these drift requirements shall be provided with an auto-zero solenoid that connects to the air velocity pressure transducer's inlet ports for enabling automatic periodic re-calibration to ensure drift-free airflow measurement. Automatic re-calibration shall occur at a minimum every 24 hours without airflow disruption to the space.
8. Manufacturers not providing autozero modules responsible for automatic self-calibration, without disruption of airflow to the space, nor meeting the specified transmitter drift requirements, shall be responsible to provide on-site recalibration service. This recalibration service consists of each terminal to be manually recalibrated by the manufacturer's technician on a quarterly basis to ensure stated accuracies are maintained. Provide this service in this contract throughout the warranty period. Include service contract pricing inclusive of this service as an attachment to the bid.
9. All airflow measurement signals shall be made available to the BAS.
10. All single blade damper air terminals shall have a wide open pressure drop less than 0.25” wc at airflow equivalent to 2000 fpm inlet duct velocity.

11. Discharge and radiated sound power level data shall be provided for each different size and type of air terminal as part of the submittal documentation. Sound power data shall be obtained in accordance with ANSI/ASHRAE 130-1995 Standard Methods of Testing for Rating Ducted Air Terminal Units. All sound data shall be obtained by a qualified, accredited and ARI approved testing laboratory.

B. ROOM SUPPLY AIR TERMINAL UNIT (STU):
 1. Shall be constructed of 22 gauge galvanized steel with mechanically locked and gasketed seams and shall meet the mechanical standards of and be in compliance with UL 181 and UL 723, NFPA 90A, ESTM E84 and bacteria standard ASTM C665.
 2. Air terminal casings shall have 3/4” thick fiber-free closed cell foam insulation. Damper shafts shall be solid ½” diameter zinc-plated steel with self-lubricating polyethylene bushings and with external indication of the damper position.
 3. Terminal lining shall be fiber-free foam meeting NFPA 90A and UL181 requirements. Lining shall consist of closed cell structure foam allowing for disinfecting and hand washing with detergents and water.
 4. Damper blades shall be 22 gauge steel with a polyethylene foam gasket to enable tight shutoff where required for smoke control applications.
 5. Provide minimum four quadrant averaging Pitot tube array type of airflow sensor located upstream from all other air terminal components. Flow sensor shall have accuracy within 3% of flow at one duct diameter upstream straight duct run.
 6. Supply terminals shall be provided with integral hot water reheat coils comprised of copper tubing of 0.017” wall thickness and have heavy gauge sine wave coil fins for efficient heat transfer meeting scheduled capacities. The supply terminals shall be certified under ARI-410, and display the ARI label.
 7. ACS contractor shall provide factory mounted transitions from supply terminal to reheat coil, as required
 8. Supply terminal units shall be capable of single gang airflow control of up to 7000 cfm per unit, with a single factory mounted reheat coil.
 9. Terminal casing and damper leakage must not exceed the following when tested in accordance with ASHRAE 130-1996, “Methods of Testing for Rating Ducted Air Terminal Units” (Data must be included in submittal). Leakage rates are exclusive of reheat coils:

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Casing Leakage (CFM)</th>
<th>Damper Leakage (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0” wc</td>
<td>3.0” wc</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

C. EXHAUST AIR TERMINAL UNIT (ETU / FTU):
1. General exhaust terminal casing, sensor and blade shall be constructed of 22 gauge galvanized steel. Damper shafts shall be \(\frac{1}{2} \)" diameter stainless steel with self-lubricating Teflon bushings and with external indication of the damper position.

2. General exhaust air terminals shall be provided with an orifice ring type of airflow sensor located upstream of the damper. Flow sensor shall have accuracy within 3\% of flow at one duct diameter upstream straight duct run.

3. All fume hood exhaust terminals shall be constructed of 20 gauge, 316L stainless steel. Damper shafts shall be \(\frac{1}{2} \)" diameter stainless steel with self-lubricating Teflon bushings and with external indication of the damper position.

4. Fume hood exhaust terminals shall be provided with an orifice ring type of airflow sensor located upstream of the damper. Flow sensor shall have accuracy within 3\% of flow at one duct diameter upstream straight duct run.

5. Airflow sensing techniques that may become inoperative due to accumulation of particulate or chemical deposits or which can catch debris and obstruct exhaust airflow may be inappropriate for fume hood exhaust applications. Such sensors include pitot tubes, vortex shedders, thermal anemometers and other devices that protrude into the center of the exhaust air stream. Terminals using this type of flow sensing technologies must be pre-approved prior to bid.

6. Terminal casing and damper leakage must not exceed the following when tested in accordance with ASHRAE 130-1996, “Methods of Testing for Rating Ducted Air Terminal Units” (Data must be included in submittal):

<table>
<thead>
<tr>
<th>Exhaust Terminal Casing Leakage (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Size</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Closed Blade Leakage, No Seals (Per ASHRAE 130-1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Units (CFM, Inches Water)</td>
</tr>
<tr>
<td>Unit Size</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blade Seal Leakage (VOLARA; Per ASHRAE 130-1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Units (CFM, Inches Water)</td>
</tr>
<tr>
<td>Unit Size</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
2.4 TERMINAL UNIT ELECTRIC ACTUATORS

A. All actuators shall be UL 873 or UL 60730 listed and manufactured under ISO 9002 and ISO 14000 procedures.

B. All actuators shall be direct coupled type that requires no connecting linkage and shall provide a means of manual override in the absence of power.

C. All actuators shall provide stall protection throughout the full range of rotation with an easily visible position indicator.

D. High speed electronic actuators
 1. Basis of design: Siemens GNP/GAP Series.
 2. Provide high speed actuators for all terminal units serving rooms with VAV fume hoods and other areas as indicated. This shall include supply, general exhaust and fume hood exhaust terminal units.
 3. Performance shall be no less than 53 lb-in (16 Nm) with 90 degree stroke in 2 seconds.
 4. Repositioning resolution shall be a minimum of 0.4%.
 5. Actuators shall be fail-safe or fail-in-place as indicated on drawings and shall be direct coupled type that requires no connecting linkages. Feedback shall be standard on all models. Actuators shall be capable of performing all control signals (2-position, floating and modulating - 0 to 10Vdc and 4 to 20 mA).
 6. Power consumption shall be no greater than 25VA.

E. Standard speed electronic actuators
 1. Basis of design: Siemens GDE/GMA/GLB Series
 2. Provide for all terminals not requiring high speed actuation. Actuators shall be fail-safe or fail in place as indicated on drawings.
 3. Spring return actuators shall be capable of both clockwise and counterclockwise spring return fail-safe operation that returns the actuator to a fail-safe position in <15 seconds in response to a loss of power. Power consumption shall be no greater than 7VA.
 4. Actuators shall use either floating control or analog control, as needed by the control application the secondary network.

2.5 ROOM LEVEL CONTROLLERS

A. General: All room level controllers shall communicate directly on the primary BAS building level Ethernet network or communicate over the secondary network via the BAS manufacturer's standard protocol. Manufacturers providing controllers requiring gateways or protocol translators shall be responsible for all hardware and software interface devices as well as support labor to ensure proper communication. Any communication issues between the room level controls and the BAS will require onsite support from the manufacturer/vendor of the room level controller until all communication issues are resolved. In addition the room level controller manufacturer/vendor shall be responsible for providing documentation indicating which software points inherent in their system will and will not be available to the BAS via gateway/translator, prior to the bid.

B. General: All room level controllers shall communicate directly on the primary BAS BACnet/IP Ethernet network (without gateways or protocol translators) or communicate over the secondary network via BACnet MS/TP protocol. Manufacturers providing controllers requiring gateways or protocol translators shall be responsible for all hardware and software interface devices as well as support labor to ensure proper communication. Any communication issues between the room level controls and the BAS will require onsite support from the manufacturer/vendor of the room level controller until all communication issues are resolved. In addition the manufacturer/vendor shall be responsible for providing documentation indicating which software points inherent in their system will and will not be available to the BAS via gateway/translator, prior to the bid.
C. VAV/CAV GENERAL LAB AND PRESSURIZED ROOM CONTROLLERS

1. Lab and pressurized room controllers shall provide closed loop pressure independent control of all laboratory room ventilation and ambient requirements. The room controller shall continuously monitor all the supply and auxiliary exhaust airflow devices including VAV fume hoods in the room.

2. Pressure control algorithm shall control supply and exhaust airflow devices in order to maintain a volumetric offset (either positive or negative). The offset shall be field adjustable and represents the volume of air which will enter (or exit) the room from the corridor or adjacent spaces. Offset shall be maintained regardless of any change in flow or static pressure. In particular, if the lead airflow device does not meet its setpoint, the controller shall adjust to recover room offset.

3. The controller shall be configurable through the BAS for either supply tracks exhaust (negative spaces) or exhaust tracks supply (positive spaces). In addition, the controllers shall be configurable to either track flow setpoints or actual measured airflows. In order to maximize pressure control reliability during compromised situations (ie actuator failure, insufficient duct static pressure), the controller shall automatically switch to flow tracking from setpoint tracking, if the lead device (supply or exhaust) fails to stay within (selectable, typically 3%) flow units of its own set point for (selectable, typically 5 minutes) period of time. Controllers relying on setpoint tracking only shall provide details of proposed alternative.

4. Unless specifically indicated within the Sequence of Operation, volumetric offset shall be the only acceptable means of controlling room pressurization. Systems that rely on differential pressure as a means of control shall provide documentation that space pressurization can be maintained if fume hood sashes are changed at the same time a door to the space is opened.

5. Room ambient control (temperature, humidity etc.) and any other room control functions (lighting, IAQ etc.) shall be maintained by the controller as indicated in Sequence of Operation.

6. All laboratory room controllers shall include all inputs and control outputs necessary to perform the specified control sequences. Each laboratory room controller shall operate as a stand alone unit, performing its specified control responsibilities independently. All input point and control output point databases as well as the control programs shall be stored in non-volatile EEPROM, EPROM and PROM memory, or a minimum of 100-hour battery backup shall be provided.

7. Laboratory and Pressurized Room Controllers shall have available a SECURE MODE of operation, in which changes to any control parameter can only be made from designated terminals on BAS by authorized personnel, and not locally through the man-machine interface port.

8. Momentary or extended losses of power shall not change or affect any laboratory room controller setpoints or stored data. Upon resumption of power the controller shall resume full normal operation exactly as before without any need for manual intervention. Upon a power failure or operational failure within the controller, the air terminal shall automatically be positioned to the predetermined fully open or fully closed (failsafe) position as indicated on the air terminal schedules in the project plans.

9. All laboratory room controllers shall include the ability to accept a minimum of two dry contact closure inputs from an auxiliary source into the room control sequence for such purposes as occupied/unoccupied ventilation changeover, emergency mode sequences, etc.

10. Airflow tracking controllers shall be capable of having separate volumetric offset setpoints for occupied modes and unoccupied modes.

11. All laboratory and pressurized room controllers shall provide a general alarm output that may be used for auxiliary signaling or notification.

D. VAV FUME HOOD FACE VELOCITY CONTROLLER
1. Furnish and install a UL 916 listed individual VAV fume hood controller for each VAV fume hood which shall maintain the required average face velocity at the setpoint independently of the sash position. Documentation verifying the UL 916 Listing for the fume hood controller shall be included in any proposal as well as the submittal. Also, furnish and install sash sensors on each fume hood to indicate the position of all fume hood sashes to the respective fume hood controller. Sash sensors shall provide an input signal to the fume hood controller that is linearly proportional to within one half inch of the actual sash position. All sash sensors shall be highly corrosion resistant. Sash sensor operational life shall allow a minimum of 1 million full sash travel cycles.

2. The fume hood face velocity control process shall maintain the average fume hood face velocity at the desired setpoint using a proportional, integral and derivative (PID) closed loop control algorithm. The fume hood face velocity control process shall be as follows:
 a. The fume hood controller shall continually determine the fume hood's total open area by monitoring the fume hood sash position(s) by the sash sensor(s) as well as taking account of any fume hood fixed open areas and the bypass opening(s).
 b. The fume hood controller shall calculate the required fume hood exhaust airflow necessary to maintain the average face velocity setpoint over the total open area. The controller shall continuously perform the above exhaust airflow control calculations ten times per second to ensure detection of and a maximum of 1 second response to any change in sash position.
 c. The fume hood controller shall control the fume hood exhaust airflow at the rate necessary to maintain the average face velocity setpoint. The fume hood controller shall ensure that the required fume hood exhaust to maintain the average face velocity setpoint is always maintained independently of any variations in exhaust system static pressure or any laboratory room conditions such as the ventilation airflow or room static pressure that could otherwise affect the fume hood exhaust airflow.
 d. The fume hood face velocity control process shall accommodate the required fume hood maximum to minimum exhaust airflow rate. The fume hood controller shall always maintain the required minimum fume hood exhaust airflow recommended by laboratory safety standards whenever the total fume hood open area requires less than the calculated fume hood exhaust airflow necessary to maintain the average face velocity set point. The fume hood controller shall also be capable of limiting the maximum fume hood exhaust airflow regardless of the extent of the sash opening.

3. The fume hood controller shall also interface to an Operator Display Panel (ODP) at the designated measurement location on the front of the fume hood as shown on the project plans. The ODP shall provide a continuous digital display of average fume hood face velocity whenever the fume hood sash open area requires more than the minimum fume hood exhaust airflow. The fume hood face velocity display shall be the true average face velocity as calculated by the fume hood controller based upon actual measured fume hood exhaust airflow and the total fume hood total open area. The Operator Display Panel shall have the ability to blank out display of face velocity based on owner's preference.

4. The ODP shall also include separate colored pilot lights that shall illuminate to indicate fume hood operational status as:
 a. Green for proper face velocity or flow.
 b. Yellow for marginal face velocity or flow.
 c. Red for alarm conditions such as low face velocity, general failure or emergency purge
 d. The ODP shall also sound an audible alarm device in response to face velocity alarm conditions and the ODP digital display shall change to "LOW FACE VELOCITY" or "HIGH FACE VELOCITY" appropriate to the alarm condition. A SILENCE pushbutton on the ODP shall allow the user to silence the audible alarm which shall then remain silent until a subsequent alarm occurs.
e. The ODP shall also provide an EMERGENCY PURGE pushbutton which shall enable a user to increase fume hood exhaust airflow to the maximum amount for a designated period of time as required by laboratory safety standards. After the designated time has expired the fume hood exhaust shall automatically reset to a lower, but still elevated level to prevent excessive demand on the exhaust system. The emergency purge mode of operation shall also be able to be cancelled at any time by depressing the emergency purge button a second time. The ODP shall sound its audible alarm device whenever the emergency purge mode of operation is activated. The silence pushbutton on the ODP shall also allow the user to silence the audible alarm which shall then remain silent until either the emergency purge operational mode is again activated or a face velocity alarm occurs.

f. The ODP shall also provide an audible SASH open ALERT feature that can be implemented to caution users whenever the fume hood sash opening exceeds a predetermined amount. The audible alert shall consists of one minute repeating cycles of a series of quick 'chirps' that continues until the sash opening is reduced to an allowable amount. There shall be two sash alert opening settings, based on whether hood is in use or unattended.

g. The ODP shall provide audible and visual indication whenever supervisory signal is lost from a fume hood sash sensor or the flow input transmitter, by turning on the Red light and the audible alarm device.

h. The ODP shall be provided with an intuitive visual effect, such as a green “leaf” light, for indicating safe, sustainable operation, such as keeping sash closed when not in use.

5. All fume hood control and ODP display and operational parameters shall be established and be changeable only by authorized personnel using a portable operator's terminal. These operational parameters shall include:
 a. Fume hood average face velocity setpoint.
 b. Fume hood minimum & maximum exhaust airflow.
 c. Face velocity high and low alarm limits and associated alarm time delay to avoid transient alarms.
 d. Face velocity high and low warning limits.
 e. Emergency purge time periods and exhaust levels.
 f. Allowable maximum sash opening associated with the sash alert feature.

6. The portable operator's terminal shall plug into the ODP as well as into the laboratory room controller. In addition, all laboratory fume hood and laboratory room control parameters along with all other facility control and monitoring functions shall be accessible to authorized personnel from designated terminals on the BAS control and monitoring network.

7. Momentary or extended losses of power shall not change or affect any VAV fume hood control setpoints, operational parameters or stored data. Upon resumption of power after a power failure, fume hood controllers shall resume full normal operation exactly as before the power failure and without any need for manual intervention. Upon a power failure or operational failure within the fume hood controller, the fume hood exhaust air terminal shall be automatically positioned to the fully open (failsafe) position as required by laboratory safety standards and defined herein.

8. Coordinate sash sensor requirements with the fume hood size and sash configuration defined in the Lab Furnishings documents

E. 2-STATE (CV2) FUME HOOD CONTROLLERS
1. Provide a UL 916 listed controller where shown on drawings for constant volume-2 state (CV2) fume hoods. Exhaust air shall be controlled at two individual setpoints corresponding to switch/software command as indicated in, Sequence of Controls. The exhaust control process shall maintain exhaust at its respective setpoint in response to actual exhaust airflow measurement to ensure full pressure independent closed loop control using a proportional, integral and derivative (PID) control algorithm.
2. Controller shall be capable of receiving status override functions as defined in, Sequence of Operation.
3. The controller shall provide a continuous signal to the Lab and Pressurized Room Controller indicating exhaust airflow to ensure stand-alone flow tracking. If the control function is directly connected to the Lab and Pressurized Room Controller, a dedicated controller is not required. Stand-alone controllers relying on the LAN or “assumed flows” for input to the Lab and Pressurized Room Controller are not acceptable.
4. Provide an Operator Display Panel (ODP) for local alarming as specified under Part 2 of this specification, if not provided by fume hood manufacturer.

F. CONSTANT VOLUME AND 2-STATE FUME HOOD MONITORS
1. General failure
2. Exhaust flow
3. Exhaust flow setpoints
4. Occupied/unoccupied status
5. Occupied/unoccupied flow setpoints
6. Low and high flow warnings
7. Low and high flow alarms

G. CAV/2-STATE AUXILLIARY EXHAUST DEVICE CONTROLLERS
1. Provide a UL 916 listed controller where shown on drawings for constant volume-2 state (CV2) auxiliary exhaust devices (i.e., canopy hoods, snorkels etc). Exhaust air shall be controlled at two individual setpoints corresponding to switch/software command as indicated in, Sequence of Operation. The exhaust control process shall maintain exhaust at its respective setpoint in response to actual exhaust airflow measurement to ensure full pressure independent closed loop control using a proportional, integral and derivative (PID) control algorithm.
2. Controller shall be capable of receiving status override functions as defined in, Sequence of Operation.
3. The controller shall provide a continuous hardwired flow signal to the Lab and Pressurized Room Controller indicating exhaust airflow to ensure stand-alone flow tracking. If the control function is directly connected to the Lab and Pressurized Room Controller, a dedicated controller is not required. Stand-alone controllers relying on the LAN or “assumed flows” for input to the Lab and Pressurized Room Controller are not acceptable.

2.6 HUMIDITY SENSORS

A. Basis of design: Siemens QFA/QFM Series
B. Room Relative Humidity (QFA Series)
 1. Sensor Humidity range 0 to 100%
 2. Accuracy +/-2% rh (10-90% rh);
 3. Sensing element Digital Sensor IC (capacitive)
 4. Output signal 4-20 mA/0-5V/0-10V selectable
 5. Calibration adjustment adjustable to +/-5% rh
C. Duct Relative Humidity (QFM Series)
 1. Sensor Humidity range 0 to 100%
 2. Accuracy +/-2% or +/- 5% as indicated in the sequences or drawings
 3. Sensing element Digital Sensor IC (capacitive)
 4. Output signal 4-20 mA/0-5V/0-10V selectable
 5. Calibration adjustment adjustable to +/-5% rh

D. Humidity sensing elements shall be removable and field replaceable if needed.
E. Provide with readable LCD display where indicated in the sequences or drawings.
2. Room Sensors: For rooms with temperature sensing as well, provide a combined temperature/humidity sensor or provide units with matching cover. Provide options as required by sequences or drawings and specified under Terminal Unit Space Temperature Sensor “Options”.

G. Provide certificate of calibration where called for in sequences or drawings

2.7 OCCUPANCY SENSORS

A. Occupancy sensors shall use a combination Passive Infrared (PIR) and Microwave technology with continuous monitoring and built-in diagnostics. Ceiling mounted units shall have 360 deg field-of-views.

B. Basis of design: IntelliSense DT-6360STC

2.8 ROOM PRESSURE SENSORS

A. Basis of design: Setra Model 264.

B. Ultra low differential pressure transmitter with the following minimum characteristics:
 1. Pressure Range +/- 1.0 inches w.c.
 2. Accuracy +/- 0.25% of Full Scale Range

2.9 ROOM LEVEL MONITORS

A. Room Pressure, Temperature and Humidity Monitors
 1. Basis of design: Siemens Model SRCM
 2. Provide an integral very low differential pressure transmitter and monitor connected to passive pressure probes located in each space indicated on drawings. Monitor shall have the option of using a remote pressure transmitter in lieu of the integral transmitter or in addition to the integral transmitter for indicating differential pressure from a second space (e.g., space plus anteroom).
 3. Monitor shall be provided with a backlit LCD display to indicate pressure difference between the space and reference space, with polarity indicating positive or negative to the reference space. The display shall also have status indicators for Normal (Green) and Alarm (Red) conditions and audible alarm (with time delay feature). Monitor shall be provided with digital readout of differential pressure and bar graph indicating range. In addition, unit shall be capable of displaying.
 4. Monitor shall have the capability of “cloning” configurations to simplify the set up of multiple unit installation.
 5. Display shall be capable of monitoring a primary and secondary room, with free form data entry for room names. Conditions available for both rooms shall be pressure, temperature and humidity and a user defined parameter. Engineering units shall be field selectable (inches WC/Pa; Fahrenheit/Celsius).
 6. Monitor shall be provided with a password protected “Quick Room Change” feature, which allows the user to disable alarms temporarily.
 7. Room Pressure Monitor shall have the following minimum characteristics:
 a. Output signal 0-5Vdc/0-10Vdc/4-20mA, field selectable
 b. Input signal 2 inputs for remote pressure sensors; 1 internal pressure sensor
 c. Alarm output SPDT relay
 d. Operating power 24 VAC 60 Hz
 e. Pressure Range +/- 1.0 inches WC (or as indicated in sequence, drawings)
 f. Accuracy +/- 0.25% of Full Scale Range (or as indicated in sequence, drawings)
 g. Resolution 0.001 inches WC
 h. Door status SPDT or SPST NO
 i. Pressure Fittings Barbed fittings for ¼” O.D. tubing
 8. Communication to the BAS/room controller shall be via proprietary protocol or BACnet MS/TP ASC. For applications requiring pressure control, the output signal may be used in addition to digital communication - see sequences/drawings for requirements.
9. If required by sequence/drawings, interlock monitor with door contacts. If door input is enabled, monitor shall indicate open door via Yellow indication on display.
10. If indicated on drawings/sequences, provide a remote annunciator where shown. Annunciator shall be provided with audible alarm and LEDs indicating Normal (Green) and Alarm (Red).

2.10 CONTROL SEQUENCES OF OPERATION AND ALARM LIMITS

A. Refer to Siemens Control Drawings for alarm points. Alarm points and appropriate message to be segregated and classified to complement facility protocols and procedures.
B. Refer to Control Sequences in Section 230993.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that conditioned power supply is available to control units and operator workstation.

3.2 INSTALLATION

A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
B. Connect and configure equipment and software to achieve sequence of operation specified.
C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.
 a. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
D. Install guards on thermostats in the following locations:
 a. Entrances.
 b. Public areas.
 c. Where indicated.
E. Install automatic dampers according to Section 233300 "Air Duct Accessories."
F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
G. Install labels and nameplates to identify control components according to Section 230553 "Identification for HVAC Piping and Equipment."
H. Install hydronic instrument wells, valves, and other accessories according to Section 232113 "Hydronic Piping."
 ?. Install duct volume-control dampers according to Section 233113 "Metal Ducts."
I. Install electronic and fiber-optic cables according to Siemens installation specification.

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Install raceways, boxes, and cabinets according to Section 260533 "Raceways and Boxes for Electrical Systems."
B. Install building wire and cable according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
C. Install signal and communication cable according to Section 271500 "Communications Horizontal Cabling."
 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 2. Install exposed cable in raceway.
3. Install concealed cable in raceway.
4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

D. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 ADJUSTING

A. Calibrating and Adjusting:
 a. Calibrate instruments.
 b. Make three-point calibration test for both linearity and accuracy for each analog instrument.
 c. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
 d. Control System Inputs and Outputs:
 1) Check analog inputs at 0, 50, and 100 percent of span.
 2) Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 3) Check digital inputs using jumper wire.
 4) Check digital outputs using ohmmeter to test for contact making or breaking.
 5) Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
 e. Flow:
 1) Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 2) Manually operate flow switches to verify that they make or break contact.
 f. Pressure:
 1) Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 2) Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
 g. Temperature:
 1) Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistant source.
 2) Calibrate temperature switches to make or break contacts.
 h. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
 i. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
 j. Provide diagnostic and test instruments for calibration and adjustment of system.
 k. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature and humidity set points.
C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

END OF SECTION
SECTION 230993 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes control sequences for HVAC systems, subsystems, and equipment.
B. Related Sections include the following:
 1. Section 230900 "Instrumentation and Control for HVAC" for control equipment and devices and for submittal requirements.
 2. Siemens control drawings

1.3 DEFINITIONS
A. DDC: Direct digital control.
B. VAV: Variable air volume.

1.4 TERMINAL UNIT OPERATING SEQUENCE
A. Heating Coils, Hydronic:
 1. Room Temperature:
 c. Action: Modulate valve to maintain temperature.
 2. Display:
 a. Room temperature indication.
 b. Room temperature set point.
 c. Control-valve position.
B. Constant-Volume, Terminal Air Units, Hydronic:
 1. Room Temperature:
 c. Action: Modulate valve to maintain temperature.
 2. Display:
 a. Room/area served.
 b. Room occupied/unoccupied.
 c. Room temperature indication.
 d. Room temperature set point.
 e. Room temperature set point, occupied.
 f. Room temperature set point, unoccupied.
 g. Control-valve position as percent open.
C. VAV, Terminal Air Units with Hydronic Coils:
 1. Room Temperature:
 c. Action: Modulate damper and valve to maintain temperature.
1) Sequence damper from full open to minimum position, then valve from closed to fully open.

2. Display:
 a. Room/area served.
 b. Room occupied/unoccupied.
 c. Room temperature indication.
 d. Room temperature set point.
 e. Room temperature set point, occupied.
 f. Room temperature set point, unoccupied.
 g. Air-damper position as percent open.
 h. Control-valve position as percent open.

1.5 DETAILED ROOM CONTROL SEQUENCES

A. GENERAL
1. Temperature set points shall be as follows: cooling 75°F (adj), heating 70°F (adj) with a 5°F dead band.
2. Refer to Siemens control Dwgs for detailed control diagram etc. details.
3. Refer to M4 series Dwgs for room pressurization and control type etc. Information.
4. Refer to M4 & M7 series Dwgs for 2-way or 3-way control valve

B. TYPE "A" ROOM CONTROLS SEQUENCE OF OPERATION

1. TEMPERATURE CONTROL On a rise in space temperature at the space temperature sensor above set-point, the heating hot water control valve shall modulate close, and the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.
2. On a fall in space temperature at the space temperature sensor below set-point, the supply VAV damper shall modulate to its minimum position and the heating hot water control valve shall modulate to maintain a discharge air temperature at 85°F (adj) and maintain space temperature set-point +/-0.5°F.
3. On a further fall in space temperature below set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.
4. The adjustable tolerance of +/-0.5°F has been selected to prevent hunting.
5. VENTILATION CONTROL The return/exhaust VAV box shall be hardwired to the supply VAV box.
6. The return/exhaust VAV box damper shall modulate in sequence with the supply VAV box damper to maintain room positive or negative pressure respective to adjacent corridor.

C. TYPE "B" AND "G" "LAB CONTROLS SEQUENCE OF OPERATION

1. TEMPERATURE CONTROL On a rise in space temperature at the space temperature sensor above set-point, the heating hot water control valve shall modulate closed, and the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.
2. On a fall in space temperature at the space temperature sensor below set-point, the supply VAV damper shall modulate to its minimum position and the heating hot water control valve shall modulate to maintain a discharge air temperature at 85°F (adj) and maintain space temperature set-point +/-0.5°F.
3. On a further fall in space temperature below set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.
4. The adjustable tolerance of +/-0.5°F has been selected to prevent hunting.
5. **GENERAL EXHAUST CONTROL** The exhaust VAV box damper shall modulate in sequence with the supply VAV box damper to maintain room pressure respective to adjacent corridor.

6. **FUME HOOD CONTROL (TYPE "B" ROOM)** Air flow tracking scheme is utilized to maintain the lab to corridor negative pressure relationship. The exhaust air flows from the lab are totaled and maintain a constant differential between supply air and exhaust air to maintain the lab negative with respect to the corridor.

7. The fume hood controller monitors the fume hood sash position and modulates the fume hood exhaust terminal unit as necessary to maintain proper face velocity across the open portion of the fume hood. The fume hood control system returns to the proper velocity set-point within one (1) second of any change in sash position.

8. When the fume hood exhaust damper modulates open, the general exhaust VAV box damper shall modulate closed to maintain the desired fixed differential (determined by air balancer) between supply and total exhaust air.

9. The fume hood indicating panel displays velocity across the hood opening and provides local alarm if the velocity falls below present limits. The alarm also reports to the DDC.

10. Refer to M4 & M7 schedules for the design maximum and minimum fume hood air flow settings (when the fume hood position is closed).

D. **TYPE “C” ROOM CONTROLS SEQUENCE OF OPERATION**

1. **TEMPERATURE CONTROL** On a rise in space temperature at the space temperature sensor above set-point, the heating hot water control valve shall modulate closed, and the supply VAV damper shall modulate open to maintain space temperature set-point +/- 0.5°F.

2. On a fall in space temperature at the space temperature sensor below set-point, the supply VAV damper shall modulate to its minimum position and the heating hot water control valve (V-1) shall modulate to maintain a discharge air temperature at 85°F (adj) and maintain space temperature set-point +/-0.5°F.

3. On a further fall in space temperature below set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.

4. The adjustable tolerance of +/-0.5°F has been selected to prevent hunting.

E. **TYPE “D” ROOM CONTROLS SEQUENCE OF OPERATION**

1. **SUPPLY VAV / CAV BOX TEMPERATURE CONTROL (WHERE APPLICABLE)** On a rise in space temperature at the space temperature sensor above set-point, the heating hot water control valve (V-1) shall modulate closed, and the supply VAV damper shall modulate open to maintain space temperature set-point +/- 0.5°F.

2. On a fall in space temperature at the space temperature sensor below set-point, the supply VAV damper shall modulate to its minimum position and the heating hot water control valve shall modulate to maintain a discharge air temperature at 85°F (adj) and maintain space temperature set-point +/-0.5°F.

3. On a further fall in space temperature below set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.

4. The adjustable tolerance of +/-0.5°F has been selected to prevent hunting.

5. **CONSTANT AIR VOLUME (CAV) TEMPERATURE CONTROL (WHERE APPLICABLE)** On a rise in space temperature at the space temperature sensor above set-point, the heating hot water control valve shall close.

6. On a fall in space temperature at the space temperature sensor below set-point, the heating hot water control valve shall modulate to maintain space temperature set-point +/- 0.5°F.
7. **SPACE TEMPERATURE MONITORING & ALARM CONTROL FOR ANIMAL HOLDING ROOMS.**

In addition to following having controls, the animal holding rooms’ temperature shall be locally and remotely monitored through existing local and central alarm monitoring panels. Provide new space temperature sensors for all animal holding rooms for this display and alarm monitoring purpose. Refer to Siemens control drawing for more details.

1. **TYPE “E” ROOM CONTROLS SEQUENCE OF OPERATION**

8. Supply VAV box without RHC temperature control (where applicable) On a rise in space temperature at the space temperature sensor above set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/- 0.5°F.

F. TYPE “F” ROOM CONTROLS SEQUENCE OF OPERATION

1. **GENERAL** Occupancy modes shall be determined by a wall switch located in the space.
2. Temperature set points shall be as follows: cooling 75°F (adj), heating 70° (adj) with a 5°F dead band.
3. **TEMPERATURE CONTROL** On a rise in space temperature at the space temperature sensor above set-point, the heating hot water control valve shall modulate closed, and the supply VAV damper shall modulate open to maintain space temperature set-point +/- 0.5°F.
4. On a fall in space temperature at the space temperature sensor below set-point, the supply VAV damper shall modulate to its minimum position and the heating hot water control valve shall modulate to maintain a discharge air temperature at 85°F (adj) and maintain space temperature set-point +/-0.5°F.
5. On a further fall in space temperature below set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.
6. The adjustable tolerance of +/-0.5°F has been selected to prevent hunting.

8. **VENTILATION CONTROL** During unoccupied mode the supply VAV box damper shall be set to its minimum airflow position.
9. During occupied mode (when the wall switch is engaged) the supply VAV box damper shall override to its maximum airflow position (100% open).
10. The exhaust VAV box damper shall modulate in sequence with the supply VAV box damper to maintain room positive pressure respective to adjacent corridor.

G. TYPE “H” ROOM CONTROLS SEQUENCE OF OPERATION

1. **GENERAL** The room ventilation is designed at 10 air changes per hour (ach). During emergency conditions the air change rate shall increase to 20 ach.
2. Temperature control
3. On a rise in space temperature at the space temperature sensor (T-2) above set-point, the heating hot water control valve (V-1) shall modulate closed, and the supply VAV damper shall modulate open to maintain space temperature set-point +/- 0.5°F.
4. On a fall in space temperature at the space temperature sensor below set-point, the supply VAV damper shall modulate to its minimum position and the heating hot water control valve shall modulate to maintain a discharge air temperature at 85°F (adj) and maintain space temperature set-point +/-0.5°F.
5. On a further fall in space temperature below set-point, the supply VAV damper shall modulate open to maintain space temperature set-point +/-0.5°F.
6. The adjustable tolerance of +/-0.5°F has been selected to prevent hunting.
7. A type H room has a dedicated constant volume exhaust fan for fume hood in the room; the fume hood terminal units will be constant volume operation (for existing hoods in rooms # 0133 and #1145.2), associated existing exhaust fan EF-8a, ef-8b and ex. EF-1. Fume hood terminal units for new hoods in room 1225 and 1225.1 will also be constant volume (TBD – coordinate with KCI for final hood selection).
8. **GENERAL EXHAUST CONTROL** The exhaust terminal unit for these fume hoods shall modulate in sequence with the supply VAV box damper to maintain room pressure respective to adjacent corridor.
9. Controls for the existing exhaust fans EF-8A, EF-8 BA and EF-1 are not in the scope of this renovation, they shall be remain as existing.

H. **NEW EF-15 (FOR RMS. #1225 & 1125.1) CONTROL**
1. Fan shall be started and stopped by DDC. Fan shall run continuously.
2. DDC shall monitor the fan status through its respective current switch. The DDC shall generate an alarm if abnormal fan status is detected.
3. The DDC shall monitor the exhaust duct static pressure and modulate the fan speed through VFD to maintain the static pressure setpoint of -0.5” w.c. (adjustable)

I. **TYPE “I” LAB SUITE # 1145 CONTROL MODIFICATION**
1. **GENERAL** The lab suite has constant volume venturi supply, exhaust and fume hood terminal units. This renovation control modification to this lab suite is to convert the CV to VAV operation.
2. Two fume hoods will be removed and the FH venturi valves will be reused for space general exhaust.
3. Refer to M4 drawing for each room within this lab suite for control type (type A or B as indicated there) and control sequence of operation will be the same as described above for either type A or Type B.
4. Provide any new control components as required to achieve above described control modification. Refer to Siemens control diagram drawings for details of control sequence of operation and required demolition and new control components.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION (Not Applicable)

PART 4 - END OF SECTION
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.

1.3 DEFINITIONS
 A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.
 B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
 C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS
 A. Natural-Gas System Pressure within Buildings: [0.5 psig or less] [More than 0.5 psig but not more than 2 psig] [More than 2 psig but not more than 5 psig] <Insert pressure range>.
 B. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
 B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
 C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
 D. Protect stored PE pipes and valves from direct sunlight.

1.7 PROJECT CONDITIONS
 A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied
by Owner or others unless permitted under the following conditions and then only after arranging to
provide purging and startup of natural-gas supply according to requirements indicated:
1. Notify [Architect] [Construction Manager] [Owner] no fewer than [two] days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without [Architect's] [Construction Manager's] [Owner's] written permission.

1.8 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.
B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 JOINING MATERIALS
A. Joint Compound and Tape: Suitable for natural gas.

2.2 MANUAL GAS SHUTOFF VALVES
A. Valve Boxes:
 1. Cast-iron, two-section box.
 2. Top section with cover with "GAS" lettering.
 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 4. Adjustable cast-iron extensions of length required for depth of bury.
 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.3 LABELING AND IDENTIFYING
A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
B. Inspect natural-gas piping according to NFPA 54 the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
C. Comply with NFPA 54 the International Fuel Gas Code requirements for prevention of accidental ignition.
3.3 INDOOR PIPING INSTALLATION

A. Comply with [NFPA 54] [the International Fuel Gas Code] for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.

3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.

5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
R. Connect branch piping from top or side of horizontal piping.
S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
T. Do not use natural-gas piping as grounding electrode.
U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
V. Install pressure gage [downstream] [upstream and downstream] from each line regulator. Pressure gages are specified in Section 230519 "Meters and Gages for HVAC Piping."
W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 VALVE INSTALLATION
A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
B. Install underground valves with valve boxes.
C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
D. Install earthquake valves aboveground outside buildings according to listing.
E. Install anode for metallic valves in underground PE piping.

3.5 PIPING JOINT CONSTRUCTION
A. Ream ends of pipes and tubes and remove burrs.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
D. Welded Joints:

Bevel plain ends of steel pipe.

Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

H. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D2657.

1. Plain-End Pipe and Fittings: Use butt fusion.
2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.6 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

B. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.

D. Install hangers for horizontal drawn-temper copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 2. NPS 1/2 and NPS 5/8: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 3. NPS 3/4 and NPS 7/8: Maximum span, 84 inches; minimum rod size, 3/8 inch.
 4. NPS 1: Maximum span, 96 inches; minimum rod size, 3/8 inch.

E. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.7 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.8 LABELING AND IDENTIFYING
A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.
B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.9 PAINTING
A. Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for painting interior and exterior natural-gas piping.
B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Alkyd System: MPI EXT 5.1D.
 c. Topcoat: Exterior alkyd enamel [(flat)] [(semigloss)] [(gloss)].
 d. Color: [Gray] <Insert color>.
C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 c. Topcoat: Interior latex [(flat)] [(low sheen)] [(eggshell)] [(satin)] [(semigloss)] [(gloss)].
 d. Color: [Gray] <Insert color>.
 2. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd [(flat)] [(eggshell)] [(semigloss)] [(gloss)].
 d. Color: [Gray] <Insert color>.
D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG
A. Aboveground, branch piping [NPS 1] <Insert pipe size> and smaller shall be[one of] the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
 3. Annealed-temper, copper tube with wrought-copper fittings and [brazed] [flared] joints.
 4. Aluminum tube with flared fittings and joints.
 5. Steel pipe with malleable-iron fittings and threaded joints.
B. Aboveground, distribution piping shall be one of[the following]:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
 3. Drawn-temper copper tube with wrought-copper fittings and brazed joints.
C. Underground, below building, piping shall be[one of] the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
2. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.11 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Annealed-temper, tin-lined copper tube with flared joints and fittings.
 3. Annealed-temper, copper tube with wrought-copper fittings and brazed joints.
 4. Aluminum tube with flared fittings and joints.
 5. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with steel welding fittings and welded joints.
 3. Drawn-temper copper tube with wrought-copper fittings and brazed joints.

3.12 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.
 3. Cast-iron, nonlubricated plug valve.

E. Valves in branch piping for single appliance shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 1. Hot-water heating piping.
 2. Air-vent piping.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. Hot-Water Heating Piping: <50 psig> at 230 deg F.
 2. Air-Vent Piping: 200 deg F.
 3. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

B. Copper or Bronze Pressure-Seal Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Grinnell (Tyco International).
 b. NIBCO INC.
 c. Viega.
 d. <Insert manufacturer's name>.
 2. Housing: Copper.
 3. O-Rings and Pipe Stops: Peroxide cured EPDM.
 4. Tools: Manufacturer's special tools.
 5. Minimum 200-psig working-pressure rating at 250 deg F.

C. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. T-DRILL Industries Inc.
 b. <Insert manufacturer's name>.

D. Wrought-Copper Unions: ASME B16.22.

2.3 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

F. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

G. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

H. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be the following:
 1. Type L drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

B. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

C. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

D. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.

3.2 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 230519 "Meters and Gages for HVAC Piping."

END OF SECTION
SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes special-duty valves and specialties for the following:
 1. Hot-water heating piping.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. Hot-Water Heating Piping: 30psig at 180 deg F.

2.2 VALVES
 A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General Duty Valves for HVAC Piping."
 B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230923.11 "Control Valves." Section 15901 "Control Valves."
 C. Bronze, Calibrated-Orifice, Balancing Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett Domestic Pump.
 c. Flow Design Inc.
 d. Gerard Engineering Co.
 e. Griswold Controls.
 f. Nexus Valve, Inc.
 g. Taco.
 h. Tour & Andersson; available through Victaulic Company.
 i. <Insert manufacturer's name>.
 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 3. Ball: Brass or stainless steel.
 4. Plug: Resin.
 5. Seat: PTFE.
 6. End Connections: Threaded or socket.
 8. Handle Style: Lever, with memory stop to retain set position.
 10. Maximum Operating Temperature: 250 deg F (121 deg C).

2.3 AIR-CONTROL DEVICES
 A. Manual Air Vents:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett Domestic Pump.
 d. Nexus Valve, Inc.
 e. Taco, Inc.
 f. <Insert manufacturer's name>.

2. Body: Bronze.
3. Internal Parts: Nonferrous.
4. Operator: Screwdriver or thumbscrew.
5. Inlet Connection: NPS 1/2 (DN 15).
7. CWP Rating: 150 psig (1035 kPa).

2.4 HYDRONIC PIPING SPECIALTIES
A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 3. Strainer Screen: Stainless-steel, [20] [40] [60]-mesh strainer, or perforated stainless-steel basket.

PART 3 - EXECUTION
3.1 VALVE APPLICATIONS
 A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
 B. Install balancing valves at each branch connection to return main.
 C. Install calibrated-orifice, balancing valves in the return pipe of each heating terminal.

3.2 HYDRONIC SPECIALTIES INSTALLATION
 A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
 B. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

END OF SECTION
SECTION 232213 - STEAM AND CONDENSATE HEATING PIPING AND SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following for LP and HP steam and condensate piping:
 1. Pipe and fittings.

1.3 DEFINITIONS
 A. HP Systems: High-pressure piping operating at more than 15 psig as required by ASME B31.1.
 B. LP Systems: Low-pressure piping operating at 15 psig or less as required by ASME B31.9.
 C. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
 D. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 PERFORMANCE REQUIREMENTS
 A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures:
 1. HP Steam Piping: 60 psig.
 2. LP Steam Piping: 15 psig.
 3. Condensate Piping: 60 psig at 307 deg F.
 4. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.
 5. Safety-Valve-Inlet and -Outlet Piping: Equal to pressure of the piping system to which it is attached.

1.5 QUALITY ASSURANCE
 A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code - Steel."
 B. Pipe Welding: Qualify processes and operators according to the following:
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
 C. ASME Compliance: Comply with ASME B31.1, "Power Piping" for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp flash tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS
 A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, plain ends, Type, Grade, and Schedule as indicated in Part 3 piping applications articles.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125, 150, and 300 as indicated in Part 3 piping applications articles.

C. Malleable-Iron Threaded Fittings: ASME B16.3; Classes 150 and 300 as indicated in Part 3 piping applications articles.

D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 piping applications articles.

E. Cast-Iron Threaded Flanges and Flanged Fittings: ASME B16.1, Classes 125 and 250 as indicated in Part 3 piping applications articles; raised ground face, and bolt holes spot faced.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, black steel of same Type, Grade, and Schedule as pipe in which installed.

H. Stainless-Steel Bellows, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 5. Maximum Operating Temperature: 250 deg F.

2.3 JOINING MATERIALS

A. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

B. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

C. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

D. Welding Materials: Comply with Section II, Part C, of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

2.4 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 d. Watts Water Technologies, Inc.
 e. Zurn Plumbing Products Group.
 2. Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.
2.5 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping."

B. Stop-Check Valves:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide [the product indicated on Drawings] or a comparable product by one of the following:
 a. Crane Co.
 b. Jenkins Valves; a Crane Company.
 c. Lunkenheimer Valves.
 d. A.Y. McDonald Mfg. Co.
 2. Body and Bonnet: Malleable iron.
 4. Disc: Cylindrical with removable liner and machined seat.
 5. Stem: Brass alloy.
 6. Operator: Outside screw and yoke with cast-iron handwheel.
 8. Pressure Class: 250.

2.6 STRAINERS

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B cast iron, with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.
 3. Strainer Screen: Stainless-steel, 20 mesh strainer, and perforated stainless-steel basket with 50 percent free area.
 4. Tapped blowoff plug.
 5. CWP Rating: 250-psig working steam pressure.

2.7 STEAM TRAPS

A. Float and Thermostatic Traps:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 b. Barnes & Jones, Inc.
 c. Dunham-Bush, Inc.
 d. Hoffman Specialty; Division of ITT Industries.
 e. Spirax Sarco, Inc.
 f. Sterling.
 2. Body and Bolted Cap: ASTM A 126, cast iron.
 6. Trap Type: Balanced pressure.
 7. Thermostatic Bellows: Stainless steel or monel.
 8. Thermostatic air vent capable of withstanding 45 deg F of superheat and resisting water hammer without sustaining damage.
PART 3 - EXECUTION

3.1 LP STEAM PIPING APPLICATIONS
 A. LP Steam Piping, NPS 2 and Smaller: Schedule 40, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.
 B. Condensate piping above grade, NPS 2 and smaller, shall be the following:
 1. Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.

3.2 HP STEAM PIPING APPLICATIONS
 A. HP Steam Piping, NPS 2 and Smaller: Schedule 40, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.
 B. Condensate piping above grade, NPS 2 and smaller, shall be the following:
 1. Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints.

3.3 ANCILLARY PIPING APPLICATIONS
 A. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
 B. Air-Vent Piping:
 1. Inlet: Same as service where installed.
 2. Outlet: Type K annealed-temper copper tubing with soldered or flared joints.

3.4 VALVE APPLICATIONS
 A. Install shutoff duty valves at branch connections to steam supply mains, at steam supply connections to equipment, and at the outlet of steam traps.

3.5 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Use indicated piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping to permit valve servicing.
 F. Install piping free of sags and bends.
 G. Install fittings for changes in direction and branch connections.
 H. Install piping to allow application of insulation.
 I. Select system components with pressure rating equal to or greater than system operating pressure.
 J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
 K. Install drains, consisting of a tee fitting, NPS 3/4 full port-ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
L. Install steam supply piping at a minimum uniform grade of 0.2 percent downward in direction of steam flow.

M. Install condensate return piping at a minimum uniform grade of 0.4 percent downward in direction of condensate flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side down.

O. Install branch connections to mains using **mechanically formed** tee fittings in main pipe, with the branch connected to top of main pipe.

P. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."

Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install strainers on supply side of control valves, pressure-reducing valves, traps, and elsewhere as indicated. Install NPS 3/4 nipple and full port ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

S. Identify piping as specified in Section 230553 "Identification for HVAC Piping and Equipment."

T. Install drip legs at low points and natural drainage points such as ends of mains, bottoms of risers, and ahead of pressure regulators, and control valves.

1. On straight runs with no natural drainage points, install drip legs at intervals not exceeding 300 feet.
2. Size drip legs same size as main. In steam mains NPS 6 and larger, drip leg size can be reduced, but to no less than NPS 4.

U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.6 STEAM-TRAP INSTALLATION

A. Install steam traps in accessible locations as close as possible to connected equipment.

B. Install full-port ball valve, strainer, and union upstream from trap; install union, check valve, and full-port ball valve downstream from trap unless otherwise indicated.

3.7 HANGERS AND SUPPORTS

A. Install hangers and supports according to Section 230529 "Hangers and Supports for HVAC Piping and Equipment." Comply with requirements below for maximum spacing.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.

C. Install hangers with the following maximum spacing and minimum rod sizes:
1. NPS 3/4: Maximum span, 9 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 9 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/2: Maximum span, 12 feet; minimum rod size, 3/8 inch.
4. NPS 2: Maximum span, 13 feet; minimum rod size, 3/8 inch.
5. NPS 2-1/2: Maximum span, 14 feet; minimum rod size, 3/8 inch.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 1/2: Maximum span, 4 feet; minimum rod size, 1/4 inch.
2. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
3. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

3.8 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube ends. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
F. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

3.9 TERMINAL EQUIPMENT CONNECTIONS

A. Size for supply and return piping connections shall be the same as or larger than equipment connections.
B. Install traps and control valves in accessible locations close to connected equipment.
C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
D. Install a drip leg at coil outlet.

3.10 FIELD QUALITY CONTROL

A. Prepare steam and condensate piping according to [ASME B31.1, "Power Piping"] and as follows:
1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush system with clean water. Clean strainers.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

B. Perform the following tests on steam and condensate piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength.
 3. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

C. Prepare written report of testing.

END OF SECTION
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 4. Sealants and gaskets.
 5. Hangers and supports.

1.3 PERFORMANCE REQUIREMENTS
 A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of the following products:
 1. Sealants and gaskets.
 B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of ducts.
 5. Dimensions of main duct runs from building grid lines.
 6. Fittings.
 7. Reinforcement and spacing.
 8. Seam and joint construction.
 9. Penetrations through fire-rated and other partitions.
 10. Equipment installation based on equipment being used on Project.
 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 12. Hangers and supports, including methods for duct and building attachment[, seismic restraints,] and vibration isolation.

1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Suspended ceiling components.
 3. Structural members to which duct will be attached.
 4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Fire alarm devices.
 g. Security Devices.
 h. IT devices.

1.6 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
 A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SHEET METAL MATERIALS
 A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
 B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
 C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.
3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Factory- or Shop-Applied Antimicrobial Coating:
 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the interior surface.
 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 5. Shop-Applied Coating Color: Black or White.
 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: [3 inches] [4 inches] [6 inches].
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
 8. Service Temperature: Minus 40 to plus 200 deg F.
 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
 4. Solids Content: Minimum 60 percent.
 5. Shore A Hardness: Minimum 60.
 7. Mold and mildew resistant.
 8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 9. VOC: Maximum 395 g/L.
 10. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 11. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
 12. Service: Indoor or outdoor.
 13. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.4 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts with fewest possible joints.

D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

J. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL DISHWASHER EXHAUST DUCTS

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold water, and sloped a minimum of 1 percent to drain water back to the dishwasher.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Architect / Engineer from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 b. Supply Ducts with a Pressure Class of 4-Inch wg or Higher: Test representative duct sections, selected by Architect / Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 c. Return Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections, selected by Architect / Engineer from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 d. Exhaust Ducts with a Pressure Class of 4-Inch wg or Higher: Test representative duct sections, selected by Architect / Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect / Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 4. Test for leaks before applying external insulation.
 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.
 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new and existing duct systems before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Clean the following components by removing surface contaminants and deposits:
1. Air outlets and inlets (registers, grilles, and diffusers).
2. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
4. Dedicated exhaust and ventilation components and makeup air systems.

D. Mechanical Cleaning Methodology:
1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.

3.10 START UP
A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE
A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:
1. Low Pressure Ducts Connected to Constant Volume Air Handling Units, Fan Coil Units, Furnaces, Heat Pumps, Terminal Units, etc:
 a. Pressure Class: Positive, less than or equal to 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6
 d. SMACNA Leakage Class for Round and Flat Oval: 3.
2. Medium Pressure Ducts Connected to Constant Volume or Variable-Air-Volume Air-Handling Units, etc:
 a. Pressure Class: Positive greater than 2-inch wg (500 Pa) to 4-inch wg (1000 Pa).
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.
3. High Pressure Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive, greater than 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

C. Return and Outdoor Air Ducts:
1. Ducts Connected to Constant Volume Air Handling Units, Fan Coil Units, Furnaces, Heat Pumps, Terminal Units, etc:
 a. Pressure Class: Positive or negative, less than 2-inch wg.
b. Minimum SMACNA Seal Class: [B.
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative, greater than 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

D. Exhaust Ducts:
1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative less than 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative less than 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 24.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

3. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative, greater than 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.

5. Ducts Connected to Fans Exhausting Laboratory and Process (ASHRAE 62.1, Class 3 and 4) Air:
 a. Type 316, stainless-steel sheet.
 1) Exposed to View: No. 4 finish.
 2) Concealed: No. 2B finish.
 b. Pressure Class: Positive or negative See schedule on drawings.
 c. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 d. SMACNA Leakage Class: 3.

6. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative See schedule on drawings.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

E. Intermediate Reinforcement:
1. Galvanized-Steel Ducts: Galvanized steel or Carbon steel coated with zinc-chromate primer.
2. PVC-Coated Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.
3. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Galvanized.

4. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.

END OF SECTION
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 2. Fire dampers.
 3. Smoke dampers.
 4. Combination fire and smoke dampers.
 5. Turning vanes.
 6. Duct-mounted access doors.
 7. Flexible connectors.
 8. Flexible ducts.
 9. Duct accessory hardware.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control-damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; duct-mounted access doors, remote damper operators and required smoke detectors.
 e. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:
 1. Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
 2. HVAC duct drawings with locations of all required smoke detectors to be coordinated with Divisions 26 and 28.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

C. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. American Warming and Ventilating; a division of Mestek, Inc.
 3. Cesco Products; a division of Mestek, Inc.
 5. Lloyd Industries, Inc.
 6. Nailor Industries Inc.
 7. NCA Manufacturing, Inc.
 8. Pottorff.

B. Description: Gravity balanced.

D. Maximum System Pressure: 6-inch wg - 5"wg

E. Frame: Hat-shaped, 0.03-inch- thick stainless steel, with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch width0.050-inch- thick aluminum sheet [with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: [Extruded vinyl, mechanically locked or Neoprene, mechanically locked.

I. Blade Axles:
 1. Material: Stainless steel or Aluminum.
 2. Diameter: 0.20 inch

J. Tie Bars and Brackets: Aluminum.
K. Return Spring: Adjustable tension.

L. Bearings: Steel balls or synthetic pivot bushings.

M. Accessories:
1. Adjustment device to permit setting for varying differential static pressure.
2. Counterweights and spring-assist kits for vertical airflow installations.
3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
6. Screen Mounting: Rear mounted.
7. Screen Material: [Aluminum]
8. Screen Type: Insect.
9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. Nailor Industries Inc.
 f. Pottorff.
 g. Ruskin Company.
 h. Trox USA Inc.
 i. Vent Products Company, Inc.
2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized steel, 0.064 inch thick.
7. Bearings:
 a. Molded synthetic
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:
1. Size: 0.5-inch diameter.
2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.5 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Greenheck Fan Corporation.
 3. Nailor Industries Inc.
 4. NCA Manufacturing, Inc.
 5. Pottorff.
 6. Prefco; Perfect Air Control, Inc.
 7. Ruskin Company.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wgstatic pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2and[3 hours.

E. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.6 SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 4. Nailor Industries Inc.
 5. Pottorff.
 6. Ruskin Company.

B. General Requirements: Label according to UL 555S by an NRTL.

C. Smoke Detector: Provided and wired under Divisions 26 and 28, installed under Division 23.

D. Frame: Hat-shaped, 0.094-inch thick, galvanized sheet steel, with welded interlocking, gusseted or mechanically attached corners and mounting flange.

E. Blades: Roll-formed, horizontal, interlocking overlapping, 0.034-inch-0.063-inch-thick, galvanized sheet steel.

F. Leakage: Class II.

G. Rated pressure and velocity to exceed design airflow conditions.

H. Mounting Sleeve: Factory-installed, 0.039-inch thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
2.7 COMBINATION FIRE AND SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Greenheck Fan Corporation.
 3. Nailor Industries Inc.
 4. Pottorff.
 5. Ruskin Company.

B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wgstatic pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 3 hours.

F. Heat-Responsive Device: resettable device and switch package, factory installed, rated.

G. Smoke Detector: Provided and wired under Divisions 26 and 28, installed under Divisions 23.

2.8 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Elgen Manufacturing.
 4. METALAIRE, Inc.
 5. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Single or Double wall.

F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.9 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventilating; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 3. Ductmate Industries, Inc.
 4. Elgen Manufacturing.
 5. Flexmaster U.S.A., Inc.
 7. McGill AirFlow LLC.
 8. Nailor Industries Inc.

AIR DUCT ACCESSORIES 233300 - 5
v.3/11
10. Ventfabrics, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: [Four hinges] [Continuous] and two compression latches with outside and inside handles.

2.10 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Flame Gard, Inc.
 3. 3M

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0528-inch carbon or 0.0428-inch stainless steel.

D. Fasteners: Carbon or Stainless] steel to match duct material Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.11 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Elgen Manufacturing.
 4. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.12 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following::
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC

B. Insulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; [polyethylene] [aluminized] vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 10 to plus 160 deg F.

C. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.13 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket.
 Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire[and smoke] dampers according to UL listing.

H. Coordinate type and locations of all smoke detectors with divisions 26 and 28. Install smoke detectors per the manufacturers installation instructions.

I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream and downstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. At each change in direction and at maximum 50-foot spacing.
 8. Upstream and downstream from turning vanes.
 9. Upstream or downstream from duct silencers.
 10. Control devices requiring inspection.
 11. Elsewhere as indicated.

J. Install access doors with swing against duct static pressure.

K. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.
L. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

M. Install flexible connectors to connect ducts to equipment.

N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

O. Connect terminal units to supply ducts directly or with maximum 48-inch lengths of flexible duct. Do not use flexible ducts to change directions.

P. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

Q. Connect flexible ducts to metal ducts with draw bands or adhesive plus sheet metal screws.

R. Install duct test holes where required for testing and balancing purposes.

S. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

END OF SECTION
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. High-Plume Dilution Laboratory Exhaust System

1.3 PERFORMANCE REQUIREMENTS
A. Project Altitude: Base fan-performance ratings on actual Project site elevations.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, and linkages.
 6. Roof curbs and inlet plenum.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
 3. Provide nozzle velocity of exhaust fan, total exhaust flow, and discharge plume rise at specified wind velocity.
 4. Strictly adhere to QUALITY ASSURANCE requirements as stated in Section 1.7 of this specification.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set for each belt-driven unit.

1.7 QUALITY ASSURANCE
A. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
B. UL Standards: Power ventilators shall comply with UL 705.
C. Performance ratings: Conform to ANSI/AMCA Standards 210 and 300. Fans must be tested in accordance with AMCA Publications 211 and 311 in an AMCA accredited laboratory and certified for sound and air performance. Fan shall be licensed to bear the AMCA ratings seal for air performance (AMCA 210) and sound performance (AMCA 300). Manufacturers that are not licensed to bear the AMCA 210 ratings seal must provide performance witness testing (at the manufacturer's expense), or revise to "per 1.7.F."

D. Classification for Spark Resistant Construction shall conform to ANSI/AMCA Standard 99.

E. Each fan shall be vibration tested before shipping, as an assembly, in accordance with ANSI/AMCA Standard 204. Each assembled fan shall be test run at the factory at the specified fan RPM and vibration signatures shall be taken on each bearing in three planes - horizontal, vertical, and axial. The maximum allowable fan vibration shall be less than 0.10 inc./sec peak velocity; filter-in reading as measured at the fan RPM. This report shall be provided at no charge to the customer upon request.

F. Manufacturers that do not comply with paragraph 1.7.A must also provide, at the owner and engineer's option and manufacturer's expense, witness testing of fan discharge airflow, performed in an AMCA accredited laboratory, in accordance with AMCA 210. This test shall verify the critical and safety related performance of the high plume blower, as stated by the manufacturer.

1.8 COORDINATION
A. Coordinate size and location of structural-steel support members.
B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY
A. Submit, for Owner's acceptance, manufacturer's standard warranty document executed by authorized company official. Manufacturer's warranty is in addition to, and not a limitation of, other rights Owner may have under Contract Documents.
1. The warranty of this equipment is to be free from defects in material and workmanship for a period of 24 months from the purchase date. Any units or parts which prove defective during the warranty period will be replaced at the manufacturers' option when returned to the manufacturer, transportation prepaid.
2. Motor Warranty is warranted by the motor manufacturer for a period of one year. Should motors furnished prove defective during this period, they should be returned to the nearest authorized motor service station.

PART 2 - PRODUCTS
2.1 HIGH-PLUME DILUTION LABORATORY EXHAUST SYSTEM
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Loren Cook Company.

2.2 GENERAL
A. Base fan performance at standard conditions (density 0.075 Lb./ft3).
B. Each fan to be equipped with 316 stainless steel lifting lugs for corrosion resistance.
C. Fasteners exposed to corrosive exhaust shall be stainless steel.
D. Curb cap shall be hot rolled steel (optional 316 stainless steel) coated with corrosion resistant coating.
E. Fan assemblies that use flexible connectors that can fail and cause loss of laboratory containment shall not be acceptable.

F. Fan assembly shall be designed for a minimum of 125 mph wind loading, without the use of guy wires.

2.3 CORROSION Resistant Coating

A. All fan and system components (fan, nozzle and plenum) shall be corrosion resistant coated with LabCoat™, a two part electrostatically applied and baked, sustainable, corrosion resistant coating system. Standard finish color to be gray.

B. All parts shall be cleaned and chemically prepared for coating using a multi-stage wash system which includes acid pickling that removes oxide, increases surface area, and improves coating bond to the substrate.

C. The first powder coat applied over the prepared surface shall be a zinc rich epoxy primer (no less than 70% zinc) and heated to a gelatinous consistency (partial cure) at which the second powder coat of polyester resin shall be electrostatically applied and simultaneously be cured at a uniform temperature of 400°F.

D. The coating system, a total thickness of up to 6 mils, is not affected by the UV component of sunlight (does not chalk), and has superior corrosion resistance to acid, alkali, and solvents. Coating system shall exceed 4000 hour ASTM B117 Salt Spray Resistance.

E. Note that 10-20 mil thick wet coating systems pollute the environment (air and water), and that these manually applied coatings are not uniform over the impeller surface and can cause fan imbalance and vibration.

2.4 FAN HOUSING AND OUTLET

A. Fan housing to be aerodynamically designed with high-efficiency inlet, engineered to reduce incoming air turbulence.

B. Fan housing shall be bifurcated, allowing all drive components, including the motor, to be serviced without contact of the contaminated airstream. Must be manufactured of welded steel and meet specification section 2.15 for corrosion resistant coating. No uncoated metal fan parts will be acceptable.

C. Fan housings that are fabricated of polypropylene or fiberglass that have lower mechanical properties that steel, have rough interior surfaces in which corrosive, hazardous compounds can collect, and/or which chalk and structurally degrade due to the UV component of the sunlight shall not be acceptable.

D. A high velocity discharge nozzle shall be supplied by the fan manufacturer designed to efficiently handle an outlet velocity of up to 7000 FPM. Discharge stack caps or hinged covers, impeding exhaust flow shall not be permitted.

E. An integral fan housing drain shall be used to drain rainwater when the fan is de-energized.

F. A bolted & gasketed access door shall be supplied for impeller inspection and service.

G. Fan assembly shall be AMCA type C spark resistant construction minimum or as noted on the schedule.

2.5 FAN IMPELLER

A. Fan impeller shall be mixed flow design with non-stall characteristics. The impeller shall be electronically balanced both statically and dynamically exceeding AMCA Standards.

B. Fan impeller shall be manufacturer of welded and coated steel. Reference specification section 2.15 for corrosion resistant coating.
C. Fan impellers that are fabricated of polypropylene or fiberglass that have lower mechanical properties than steel, and lower maximum tip speeds are not acceptable.

D. Vacuum Seal: Fan impeller shall include a secondary fan blade located on the impeller back plate. This secondary impeller shall create a negative pressure at the shaft opening; preventing hazardous or toxic exhaust fumes from escaping through the housing shaft opening. Mechanical shaft seals that wear out and need to be replaced or seal systems that use hoses or tubes that can leak, are not acceptable.

2.6 BYPASS AIR PLENUM

A. For constant volume systems, the fan / nozzle assembly shall be connected directly to roof curb and exhaust duct without the need of the bypass air plenum. Fans mounted directly to roof curb shall be provided with a damper tray located in the roof curb for mounting of the gravity isolation damper.

B. For variable volume systems, a bypass air plenum shall be provided as shown on drawings. The plenum shall be provided with bypass air damper(s) for introducing outside air at roof level upstream of the fan, complete with bypass air weatherhood and bird screen.

C. The plenum shall be constructed of welded and coated steel and meet specification section 2.15 for corrosion resistant coating. Plenums that are fabricated of plastics or resins that are combustible and have mechanical properties less than steel shall not be acceptance.

D. The bypass air plenum shall be mounted on factory fabricated roof curb provided by the fan manufacturer, as shown on the project drawings (see section 2.7).

E. Fan designs that use inlet flexible connectors that can leak causing loss of lab exhaust shall not be permitted. Bypass air damper shall be opposed-blade design for airflow control, airfoil design, fabricated of galvanized steel for structural rigidity as standard. Bypass damper shall have plated steel damper rods, stainless steel sleeved bearings, 301 stainless steel jamb seals and the blades shall have polymer edge seals. Damper model shall be equal to or exceed a heavy duty control damper, Greenheck HCD-130. Damper blade drive linkage shall be set by manufacturer and welded to eliminate linkage slippage. All damper access and service (drive actuators) shall be performed outside of the contaminated airstream.

F. Fan isolation damper, shall be parallel-blade design, airfoil design, fabricated of steel for structural rigidity as standard. Damper shall be coated up to 4 mils of chemically resistant Hi-Pro Polyester resin, electrostatically applied and baked. isolation damper shall have plated steel damper rods, stainless steel sleeved bearings, 301 stainless steel jamb seals and the blades shall have polymer edge seals. Damper model shall be equal to or exceed a heavy duty control damper, Greenheck HCD-130. Damper blade drive linkage shall be set by manufacturer and welded to eliminate linkage slippage. All damper access and service (drive actuators) shall be performed outside of the contaminated airstream.

G. Damper actuator will be furnished by Siemens and shall be factory mounted in a weatherproof enclosure.

H. Blower / Plenum vibration isolation shall be limited to neoprene / cork vibration pads.

2.7 BYPASS AIR PLENUM CURB

A. Exhaust system manufacturer shall supply a structural support curb for the plenum of specified height as shown on the drawings.

B. Curb shall be fabricated of a minimum of 12 gauge corrosion-resistant coated steel and structurally reinforced.

C. Curb shall be insulated.

D. When properly anchored to the roof structure, the standard curb / plenum / blower assembly shall withstand wind loads of up to 125 mph without additional structural support.
2.8 FAN MOTOR AND DRIVES

A. Motors shall be premium efficiency, standard NEMA frame, 1800 or 3600 RPM, TEFC with a 1.15 service factor. A factory-mounted NEMA 3R disconnect switch shall be provided for each fan.

B. Motor maintenance shall be accomplished without fan or fan impeller removal, or requiring maintenance personnel to access the contaminated exhaust components.

C. Motor mounting shall be foot mount.

D. Drive arrangement shall be AMCA arrangement #9. Non-bifurcated belt drive arrangement #4 or direct drive arrangement #9 requiring access and handling of hazardous and contaminated fan components are not acceptable.

E. Fan shaft to be turned and polished of 1040 steel material as standard, coated with corrosion resistant coating.

F. Fan shaft bearing shall be Air Handling Quality, ball or roller pillow block type, and sized for an L-10 life of no less than 200,000 hours.

G. All shaft bearings and non-permanently lubricated motors shall have stainless steel braided extended lube lines with zerk fittings.

H. Motor, coupling and bearing shall all be outside the contaminated exhaust, and be capable of replacement without disassembling fan and accessing hazardous and contaminated fan components.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Install units with clearances for service and maintenance.

C. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

E. Pipe housing drain to nearest drain.

3.3 ADJUSTING

A. Adjust belt tension.

B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

C. Replace fan and motor pulleys as required to achieve design airflow.

D. Lubricate bearings.
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Perforated diffusers.
 3. Fixed face registers and grilles.

B. Related Sections:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Rectangular and Square Ceiling Diffusers S1:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. Nailor Industries Inc.
 c. Price Industries.
 d. Titus.
 e. Tuttle & Bailey.
 2. Devices shall be specifically designed for variable-air-volume flows.
 4. Finish: Baked enamel, white.
 5. Face Size: 24 by 24 inches.

B. Perforated Diffuser:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. Nailor Industries Inc.
 c. Price Industries.
d. Titus
 e. Tuttle & Bailey

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: Steel backpan and pattern controllers, with steel face.
4. Finish: Baked enamel, white.
5. Face Size: 24 by 24 inches.
6. Duct Inlet: Round.
7. Face Style: Flush.
9. Pattern Controller: None.

2.2 REGISTERS AND GRILLES

A. Fixed Face Register <Insert drawing designation>:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. Nailor Industries Inc.
 c. Price Industries.
 d. Titus.
 e. Tuttle & Bailey.
 3. Finish: Baked enamel, white.
 6. Frame: 1 inch wide.
 8. Mounting: Concealed/ Lay in.
 9. Damper Type: NRTL listed, opposed blade, spring closing, and with fusible link for 160 deg F.

B. Fixed Face Grille <Insert drawing designation>:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Krueger.
 b. Nailor Industries Inc.
 c. Price Industries.
 d. Titus.
 e. Tuttle & Bailey.
 3. Finish: Baked enamel, white.
 6. Frame: 1 inch wide.
 8. Mounting: Concealed / Lay in.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alpha Wire Company.
 2. Belden Inc.
 3. General Cable Technologies Corporation.
 5. Triangle.
 7. Cablec.
 B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
 C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN/XHHW 75degC.

2.2 CONNECTORS AND SPLICES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
 2. RayChem.
 3. PLM.
 4. AFC Cable Systems, Inc.
 6. Ideal Industries, Inc.
 7. ILSCO.
 8. O-Z/Gedney; an EGS Electrical Group brand; an Emerson Industrial Automation business.
 9. Tyco Electronics Corp.
 B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
2.3 SYSTEM DESCRIPTION
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS
A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN-2, single conductors in raceway.
C. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES
A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

3.4 CONNECTIONS
A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION
A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

3.6 FIRESTOPPING
A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."
3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Infrared Scanning: After Substantial Completion, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

B. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.

1.3 QUALITY ASSURANCE

A. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 4. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Mechanical-Expansion Anchors: Insert-wedge-type, [zinc-coated] [stainless] steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
5. Toggle Bolts: All-steel springhead type.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 3. To Existing Concrete: Expansion anchor fasteners.
 4. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or Spring-tension clamps.
 5. To Light Steel: Sheet metal screws.
 6. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

B. Touchup: Comply with requirements in Division 09 for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
END OF SECTION
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

1.3 SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.4 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems, Inc.
 3. Anamet Electrical, Inc.
 4. Electri-Flex Company.
 5. O-Z Gedney; a unit of General Signal.
 6. Southwire Company
 7. Thomas & Betts Corporation
 8. Western Tube and Conduit Corporation
B. Galvanized Rigid Steel Conduit (GRC): Comply with ANSI C80.1 and UL 6.
C. IMC: Comply with ANSI C80.6 and UL 1242.
D. EMT: Comply with ANSI C80.3 and UL797.
E. FMC: Zinc-coated steel, Comply with Comply with UL1.
F. LFMC: Flexible steel conduit with PVC jacket, Comply with UL 360
G. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: Comply with NEMA FB 1 and UL514B; listed for type and size raceway with which used, and for application and environment in which installed.
 1. Fittings for EMT:
 a. Material: Steel,
 b. Type: set-screw or compression.
H. Joint Compound for GRC and IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 METAL WIREWAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 4. Square D; Schneider Electric.

B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type.

E. Finish: Manufacturer's standard enamel finish.

2.3 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Prime coating, ready for field painting.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Mono-Systems, Inc.
 b. Panduit Corp.
 c. Thomas & Betts Corporation.
 d. Wiremold/Legrand.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Adalet.
 2. B-Line
 3. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 4. EGS/Appleton Electric.
 5. Erickson Electrical Equipment Company.
 8. Mono-Systems, Inc.
 10. RACO; a Hubbell Company.
 11. Spring City Electrical Manufacturing Company.
 12. Thomas & Betts Corporation.
 13. Wiremold/Legrand.

B. Sheet Metal Outlet and Device Boxes: Complying with NEMA OS 1 and UL 514A.

C. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.

D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
F. Gangable boxes are allowed, use same material as box for barriers.

G. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION
 1. Concealed Conduit, Aboveground: Rigid steel conduit; EMT.
 2. Indoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed, in Electrical Rooms, Telecomm Closets, Not Subject to Physical Damage: EMT.
 2. Exposed and Subject to Severe Physical Damage: Rigid steel conduit IMC. Includes raceways in the following locations:
 a. Loading dock.
 b. Mechanical rooms.
 3. Concealed above Ceilings and in Walls and Partitions: EMT.
 4. Concealed in block walls: EMT or MC cable
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, in damp or wet locations.

 C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.

 D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

 E. Do not install aluminum conduits.

 F. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

 A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this Article are stricter.

 B. Install conduits concealed in all spaces except, electrical rooms, mechanical rooms, and telecomm closets. Surface raceway in other than these locations is prohibited unless written approval is given by the Owner.

 C. Install conduits parallel or perpendicular to building lines.

 D. Complete raceway installation before starting conductor installation.

 E. Comply with requirements in Division 26 Section "Hangers and Supports for Electrical Systems."

 F. Stub-ups to Above Recessed Ceilings:
 1. Use EMT for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups.

 G. Expansion-Joint Fittings:
 1. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30m).
 2. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
3. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for RMC.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation. Install conduit supports to allow for expansion movement.

H. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations.

3.3 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping." Comply with requirements in Division 7 Section "Penetration Firestopping."

3.4 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

END OF SECTION
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1. RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
4. Warning labels and signs.
5. Instruction signs.
7. Miscellaneous identification products.

1.3 QUALITY ASSURANCE

B. Comply with NFPA 70.

1.4 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Install identifying devices upon completion of covering and painting of surfaces where devices are to be applied.
C. Coordinate installation of identifying devices with location of access panels and doors.
D. Install identifying devices before installing acoustical ceilings and similar concealment.

1.5 COLOR CODING

A. Provide the identification background colors for the following systems:
1. Black: general power systems unless specified otherwise.
2. Red: fire alarm system equipment.
3. Red: power system equipment associated with and served by emergency or standby power sources.
4. Yellow: power system equipment associated with or served by uninterruptible power supply systems.

PART 2 - PRODUCTS

2. POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. White letters on a colored field as specified.
 2. Legend: Indicate voltage.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

2.2 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

2.4 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a colored field as specified Minimum letter height shall be 3/8 inch (10 mm).

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 2. Power.
 3. UPS.
 4. Fire Alarm
 5. Security

B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding as specified below to identify the phase.
 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded services, feeders and branch-circuit conductors.
 a. Color shall be factory applied for sizes No. 8 AWG and smaller.
 b. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 c. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 d. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 e. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

C. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with drawings, wiring diagrams, and schedules. Apply labels to equipment and systems listed below including central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters for each unit of identifying information. on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 b. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 c. Provide equipment designations consistent with drawings (e.g., RP-A□) and source(s) of power (e.g., Fed from DP-A).
 2. Equipment to Be Labeled:
 a. Enclosed controllers.
 b. Enclosed switches.
 c. Enclosures and electrical cabinets.
 d. Panelboards: Label that includes tag designation shown on Drawings and Fed from□
 e. Panelboard Directories: Typewritten directory of circuits in the location provided by panelboard manufacturer.
f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
g. Variable-speed controllers.

END OF SECTION
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes lighting control devices such as occupancy sensors and other parametric based lighting control devices.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Industries, Inc.
2. Hubbell Building Automation, Inc.
4. Lithonia Lighting; Acuity Lighting Group, Inc.
5. Lutron Electronics Co., Inc.
6. Watt Stopper.

B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
5. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
7. Time delay: 30 seconds to 20 minutes.
8. Sensitivity: 20 to 100 percent.
9. Bypass Switch: Override the "on" function in case of sensor failure.
10. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.
C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 1. Sensitivity Adjustment: Separate for each sensing technology.
 2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.
 4. Provide sensor with the following user adjustable technology options to turn lighting fixtures on and to remain on.

<table>
<thead>
<tr>
<th>To Turn On</th>
<th>To Remain On</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Manual On</td>
<td>Either infrared or ultrasonic</td>
</tr>
<tr>
<td>b. Both infrared and ultrasonic</td>
<td>Either infrared or ultrasonic</td>
</tr>
<tr>
<td>c. Either infrared or ultrasonic</td>
<td>Either infrared or ultrasonic</td>
</tr>
<tr>
<td>d. Factory set sensor to operate under the first set of options listed above.</td>
<td></td>
</tr>
</tbody>
</table>

2.2 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Industries, Inc.
 2. Hubbell Building Automation, Inc.
 4. Lithonia Lighting; Acuity Lighting Group, Inc.
 5. Lutron Electronics Co., Inc.
 6. Sensor Switch, Inc.
 7. Watt Stopper.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
 3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.
 4. Coverage area: Suitable to provide coverage for the entire room area, minimum coverage area as specified.

C. Wall-Switch Sensor, (Drawing Tag: OS)
 1. Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft. (84 sq. m).
 2. Sensing Technology: Dual technology - PIR and ultrasonic.
 3. Switch Type: SP, manual "on," automatic "off."
 4. Voltage: Dual voltage, 120 and 277 V;
 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
2.3 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 22 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 16 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

B. Install and aim sensors in locations and orientations as recommended by the manufacturer to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 WIRING INSTALLATION

A. Wiring Method: Comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 3/4 inch.

B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.

3.5 DEMONSTRATION

A. Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Lighting and appliance branch-circuit panelboards.

1.3 SUBMITTALS
 A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 6. Include wiring diagrams for power, signal, and control wiring.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 C. Comply with NEMA PB 1.
 D. Comply with NFPA 70.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating, if needed, (250 W per panelboard) to prevent condensation.
 B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.6 PROJECT CONDITIONS
 A. Environmental Limitations:
 1. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 23 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.
B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Construction Manager's written permission.
3. Comply with NFPA 70E.

1.7 COORDINATION
A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Keys: Two spares for each type of panelboard cabinet lock.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS
A. Enclosures: Flush- and surface-mounted cabinets.
1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
4. Finishes:
 a. Panels and Trim: Galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer’s standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

B. Incoming Mains Location: Top or bottom as needed.

C. Phase, Neutral, and Ground Buses:
2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

D. Conductor Connectors: Suitable for use with conductor material and sizes.
1. Material: Same as phase buses.
2. Main and Neutral Lugs: Mechanical type.
3. Ground Lugs and Bus-Configured Terminators: Mechanical type.

E. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
2.2 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: As indicated.

D. Branch Overcurrent Protective Devices: Bolt-on thermal magnetic circuit breakers, replaceable without disturbing adjacent units.
 1. Multiple pole units enclosed in a single housing or approved handle-ties to operate as a single unit.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Same as panelboard manufacturer.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 2. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. LugsMechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407.

B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NECA 407.

B. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

C. Install overcurrent protective devices not already factory installed.
D. Install filler plates in unused spaces.
E. Arrange conductors in gutters into groups and bundle and wrap with wire ties.
F. Comply with NECA 1.

3.3 IDENTIFICATION
A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."
B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
D. Panelboards will be considered defective if they do not pass tests and inspections.
E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Provide wiring devices as specified and indicated.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE
 A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source
 from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall
 plates from a single manufacturer and one source.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article
 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 C. Comply with NFPA 70.

1.5 COORDINATION
 A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers’ Names: Shortened versions (shown in parentheses) of the following manufacturers’
 names are used in other Part 2 articles:
 1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES
 A. Heavy-duty General Duty Duplex Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6
 configuration 5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following (The "X" in the
 following series numbers represents the amperage as specified):
 a. Bryant 5X62
 b. Cooper 5X62
 c. Hubbell HBL 5X62
 d. Pass & Seymour 5X62

2.3 GFCI RECEPTACLES
 A. General Description: Straight blade, non-feed-through type. Comply with NEMA WD 1, NEMA WD
 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.
B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 1. Provide device with integral diagnostic indication for miswiring (i.e. line/load reversal) which
 prevents the receptacle from resetting.
 2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper Wiring Devices
 b. Pass & Seymour Inc.: Safe Lock series
 c. Hubbell, Inc.: GF-5X52 series
 d. Leviton Mfg. Co.: Smartlock series

2.4 TELECOMMUNICATIONS OUTLETS

A. Voice and Data Outlets
 1. Description: double-gang outlet box, minimum 2-1/2-inches deep, and double-gang duplex
 receptacle type faceplate matching style and color of duplex receptacle unless otherwise indicated
 or required to accommodate conduit serving the box.
 2. Provide one empty one-inch conduit with continuous factory-applied blue coating, from each
 outlet as follows:
 a. In rooms with lay-in ceiling tiles, terminate conduit at least (one inch) above top of
 ceiling tile with insulated bushing.
 b. In rooms with gypsum board or plaster ceilings, route conduit to an accessible ceiling space
 in the direction of the nearest telecommunications closet.
 c. Provide pulling rope and conduit cap as specified for spare conduits in Section 260533.

2.5 SNAP SWITCHES

A. Description: Heavy-duty construction, totally enclosed, thermoset material, construction base and cover,
 quiet type toggle handle, rated 120-277 volts AC and 20 amperes, silver alloy contacts, equipped with
 insulated mounting yoke, plaster ears, side and rear wiring terminals, and ground wire thermal.
 B. Provide one-pole, two-pole, three-way, and four-way switches as indicated.
 C. Comply with NEMA WD 1 and UL 20.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Bryant; 4900 series
 b. Cooper; 222X series.
 c. Hubbell;122X series.
 d. Pass & Seymour;PS20AC series.
 D. Wall Switch - Designer Style
 1. Identical to general purpose wall switch except with rectangular style rocker switch mechanism,
 and side wiring terminals.
 2. Manufacturers
 a. Cooper Wiring Devices
 b. Hubbell, Inc.: Style Line series
 c. Pass & Seymour Inc.: Sierraplex series
 E. Pilot Light Switches, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221PL for 120 V and 277 V.
 b. Pass & Seymour; PS20AC1-PLR for 120 V.
 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."
 F. Key-Operated Switches, 120/277 V, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221L.
b. Hubbell; HBL1221L.
c. Pass & Seymour; PS20AC1-L.

2. Description: Single pole, with factory-supplied key in lieu of switch handle.

G. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
 1. Products: Subject to compliance with requirements, provide one of the following:

H. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.

2.6 WALL PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished stainless steel.

2.7 MULTIOUTLET ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. MonoSystems, Inc.
 3. Wiremold Company (The).

B. General
 1. Two-piece, with divider for power and data, steel construction with factory-applied, baked enamel finish, with devices, junction fittings and other matching accessories as required for a complete system and per UL 5.
 2. Provide multioutlet assembly with devices as indicated.
 3. Provide continuous one-piece cover plates, minimum four-feet long.

C. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

2.8 SERVICE POLES

A. Description: Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.
 1. Poles: Nominal 3-inch- (76-mm-) x 2 3/4-inch- (70-mm-) cross section, with height adequate to extend from floor to at least 6 inches (150 mm) above ceiling, and with separate channels for power wiring and voice and data communication cabling.
 2. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
 3. Finishes: Manufacturer's standard painted finish and trim combination.
 4. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, 4-pair, Category 3 or 56 voice and data communication cables.
 5. Power Receptacles: Two duplex, 20-A, heavy-duty, NEMA WD 6 configuration 5-20R units.
 6. Voice and Data Communication Outlets: Two RJ-45 Category 5e6 jacks.
2.9 FINISHES

A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 1. Wiring Devices Connected to Normal Power System: White, unless otherwise indicated or required by NFPA 70 or device listing.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Prior to installation of devices, verify wall openings are neatly cut and will be completely covered by wall plates, clean debris from outlet boxes and provide extension rings to bring outlet boxes flush with finished surface.

C. Install devices and assemblies level, plumb, and square with building lines.

D. Coordination with Other Trades:
 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

E. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

F. Device Installation:
 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 5. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 6. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 7. Tighten unused terminal screws on the device.
 8. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.

G. Device Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
2. Install GFCI receptacles so that the "Push To Test" and "Reset" designations can be read correctly. If printed in both directions, install with ground pole on top.

3. Install switches with OFF position down.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."
 1. Wiring Devices (receptacles, switches, occupancy sensors, multioutlet assemblies, etc.): Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on back side of wall plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Inspect each wiring device for defects.
 2. Operate each wall switch with circuit energized and verify proper operation.
 3. After installing wiring devices and after electrical circuitry has been energized, test each receptacle for proper polarity, ground continuity, and compliance with requirements.
 4. Test each GFCI receptacle for proper operation with both local and remote fault simulations according to manufacturer's written instructions.
 5. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Remove malfunctioning units, replace with new units, and retest as specified above.

END OF SECTION
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes lighting systems, of type and ratings specified and indicated, including lamps, ballasts, and accessories.
B. Related Sections:
 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 2. Division 26 Section "" for architectural dimming systems.
 3. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.

1.3 DEFINITIONS
A. L70: Point in time where light fixture lumen output is 70% of initial light output.
B. McAdams Ellipses: Color consistency of LED's from chip to chip.

1.4 SUBMITTALS
A. Refer to Sections 012500 "Substitution Procedures" and 013300 "Submittal Procedures."
B. Product Data: For each type of lighting fixture, arranged in order of fixture designation as listed on the fixture schedule. Include data on features, accessories, finishes, and the following:
 1. Physical description of lighting fixture including dimensions.
 2. LED data: rated life, lumen output, CCT, CRI and wattage.

1.5 COORDINATION
A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.6 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Plastic Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 2. LED Drivers: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Products: Subject to compliance with requirements, provide product by manufacturers indicated on Drawings and specified.
2.2 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.

B. LED Fixtures: Minimum rated lifetime of L70 at 50,000 hours based on IES LM-79 testing; passive thermal management only unless otherwise indicated.

C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.

E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit re-lamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during re-lamping and when secured in operating position.

F. Diffusers and Globes:
 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
 b. Distribution: Pattern 12
 c. UV stabilized.

2.3 LED Modules/Boards

A. Minimum rated lifetime of L70 at 50,000 hours based on IES LM-80 testing; 4-step McAdams Ellipse maximum color consistency unless otherwise indicated; 80 CRI minimum unless otherwise indicated.

2.4 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

PART 3 - EXECUTION

3.1 INSTALLATION

A. General
 1. Install lighting systems in accordance with NECA/IESNA 500, 501 and 502.
 2. Assemble and install lighting fixtures in a manner to insure a straight and true installation without dents, warps, and other irregularities.
 3. Where lighting fixtures are specified or indicated for installation in continuous rows, install fixtures in a continuous end-to-end manner without gaps between fixture segments, and with vertical and horizontal variations, along the length of the continuous installation, no greater than 6 mm (1/4 inch).
 4. Coordinate the lighting system installation with relevant trades so as to eliminate installation interferences, such as with hangers, mechanical ducts, sprinklers, piping and steel structure.
 5. Install lighting fixtures in a common area space so that the orientation of the lens and louver door latches and hinges are in the same direction.
 6. Provide plaster frames for recessed fixtures installed in other than suspended grid ceiling systems.

B. Lighting fixtures:
 1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
 2. Install lamps in each luminaire.
C. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

D. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
 1. Install ceiling support system rods or wires for each fixture, independent of the ceiling suspension devices. Locate not more than 6 inches (150 mm) from lighting fixture corners.
 2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
 4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.2 IDENTIFICATION
 A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 CLEANING
 A. Clean interior surfaces of lighting fixtures of dirt and construction debris upon completion of installation. Clean fingerprints, smudges, and other marks from lenses, louvers, and reflecting surfaces. Leave free of visible marks.

END OF SECTION
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This work includes designing and providing a new, completely supervised, multiplexed, addressable, intelligent, analog fire alarm system (devices, components and wiring) as described herein and on the contract drawings for the Project.
 1. Provide a new fire alarm system exclusively consisting of a fire alarm panel and all associated products for a complete fire alarm system, except where otherwise indicated.
 2. Include all wiring, raceways, pull boxes, terminal cabinets, outlet and mounting boxes, control equipment, alarm, and supervisory signal initiating devices, alarm notification appliances, software and programming, acceptance testing and all other accessories and miscellaneous items required for a complete operating system even though each item is not specifically mentioned or described. Provide equipment with components identical to and bearing the labeling of those approved for intended use by independent testing laboratory.

B. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 5. Magnetic door holders.
 7. Addressable interface device.
 8. Digital alarm communicator transmitter.

1.3 DEFINITIONS
A. EMT: Electrical Metallic Tubing.
B. FACP: Fire Alarm Control Panel.
C. NICET: National Institute for Certification in Engineering Technologies.

1.4 ACTION SUBMITTALS
A. Compliance Statement
 1. Submit a document which states whether the proposed product(s) either comply or deviate from the Specification requirements. This includes all Part 1, Part 2, and Part 3 specification items. Specification requirements not noted as deviations will be assumed as complying.
 2. Provide the statement in an itemized, columnar format as follows:
 a. Column 1 - Reference to the specification item, organized in the same sequential order as in the Specification.
 b. Column 2 - Explanation for noted deviations.

B. Product Data: For each type of product, including furnished options and accessories.
 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 2. Include rated capacities, operating characteristics, and electrical characteristics.
C. Shop Drawings: For fire-alarm system.
 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 2. Include plans, elevations, sections, details, and attachments to other work.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 4. Detail assembly and support requirements.
 5. Include voltage drop calculations for notification-appliance circuits.
 6. Include battery-size calculations.
 7. Include input/output matrix.
 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 9. Include performance parameters and installation details for each detector.
 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 11. Provide program report showing that air-sampling detector pipe layout balances pneumatically within the airflow range of the air-sampling detector.
 12. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' control system.
 d. Show field wiring and equipment required for HVAC unit shutdown on alarm and override by firefighters' smoke-evacuation system.
 e. Locate detectors according to manufacturer's written recommendations.
 f. Show air-sampling detector pipe routing.
 13. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
 14. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

D. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified, fire-alarm technician; Level III minimum.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
d. Riser diagram.
e. Device addresses.
f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
g. Record copy of site-specific software.
h. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.
i. Manufacturer's required maintenance related to system warranty requirements.
j. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps for Remote Indicating Lamp Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 2. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
 3. Smoke Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than one unit of each type.
 4. Audible and Visual Notification Appliances: One of each type installed.

1.7 ALLOWANCES

A. Extra Fixtures
 1. Provide an additional 3 speakers and 3 strobe units above what is indicated on the drawings. Include for each of the extra units, installation of 75 feet of conduit and wire, and connection to the fire alarm system.
 2. Install devices at locations to be determined by the Architect.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
B. Installer Qualifications: Installation shall be by personnel certified by NICET as minimum fire-alarm Level III technician.
C. Authority Having Jurisdiction (AHJ): The Office of Risk Management of Wayne State University shall be the AHJ.
D. Codes of Jurisdiction: Comply with NFPA 70, 72 and 101 as the Codes of Jurisdiction.
1.9 PROJECT CONDITIONS
 A. Interruption of Existing Fire-Alarm Service: Do not interrupt existing fire-alarm service to facilities occupied by Owner or others unless permitted by the Owner under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
 2. Do not proceed with interruption of fire-alarm service without Owner's written permission. The Owner retains the right to deny interruption of service and require the Contractor to use alternate means at no additional cost to the Owner.
 B. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.10 SEQUENCING AND SCHEDULING
 A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
 B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

PART 2 - PRODUCTS
2.1 SYSTEM DESCRIPTION
 A. Noncoded, UL-certified voice-communication, addressable loop system, with multiplexed signal transmission and voice/strobe evacuation.
 B. Automatic sensitivity control of smoke detectors.
 C. All components provided shall be listed for use with the selected system.
 D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION
 A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 2. Heat detectors.
 3. Atrium smoke detectors.
 4. Duct smoke detectors.
 5. Automatic sprinkler system water flow.
 6. Fire pump running.
 B. Fire-alarm signal shall initiate the following actions:
 1. Continuously operate alarm notification appliances, including voice evacuation notices.
 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 3. Transmit an alarm signal to the remote alarm receiving station (i.e., WSU Public Safety Department.)
 4. Activate voice/alarm communication system.
 5. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
 6. Activate smoke-control system at smoke-control system panel (FSCP).
 7. Close smoke dampers in air ducts as indicated.
 8. Recall elevators to primary or alternate recall floors.
10. Activate emergency shutoffs for lab gases via gas monitoring alarm panel.
11. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 1. Valve supervisory switch.
 2. Elevator shunt-trip supervision.
 3. Fire pump running.
 4. Fire-pump loss of power.
 5. Fire-pump power phase reversal.
 6. Independent fire-detection and suppression systems.
 7. User disabling of zones or individual devices.
 8. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:
 1. Open circuits, shorts, and grounds in designated circuits.
 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 4. Loss of primary power at fire-alarm control unit.
 5. Ground or a single break in internal circuits of fire-alarm control unit.
 6. Abnormal ac voltage at fire-alarm control unit.
 7. Break in standby battery circuitry.
 8. Failure of battery charging.
 9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:
 1. Initiate notification appliances.
 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 3. Transmit a trouble or supervisory signal to the WSU Public Safety remote alarm receiving station.
 4. Display system status on graphic annunciator.

2.3 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. National Time and Signal
 2. Gamewell-FCI by Honeywell.
 4. SimplexGrinnell LP.

2.4 FIRE-ALARM CONTROL UNIT (FACP)

A. General Requirements for Fire-Alarm Control Unit:
 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
 d. The FACP shall be listed for connection to a central-station signaling system service.
e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 500-event history log.

2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.

3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
1. Annunciator and Display: Liquid-crystal type, two three line(s) of 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

C. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
1. Pathway Class Designations: NFPA 72, Class B.
2. Install no more than 50 addressable devices on each signaling-line circuit. Do not combine devices from different floors and the same signaling-line circuit.
3. Serial Interfaces:
 a. One dedicated RS 485 port for remote station (i.e. WSU Public Safety Department) operation.
 b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 c. One RS 232 or USB port, as required, for mass notification interface with WSU Public Safety System.

D. Notification-Appliance Circuit:
1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

E. Elevator Recall:
1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 a. Elevator lobby detectors except the lobby detector on the designated floor.
 b. Smoke detector in elevator machine room.
 c. Smoke detectors in elevator hoistway.
2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.

F. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory, and print out the final adjusted values on system printer.

G. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to WSU Public Safety Department. Provide a minimum of (2) dry contacts for this purpose.

H. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided as a special module that is part of fire-alarm control unit.
1. Indicate number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711.
a. Allow the application of, and evacuation signal to, indicated number of zones and, at the same time, allow voice paging to the other zones selectively or in any combination.
b. Programmable tone and message sequence selection.
c. Standard digitally recorded messages for "Evacuation" and "All Clear."
d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification-appliance circuits of fire-alarm control unit.

2. Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.

3. Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.

4. Provide emergency communication system capable of connecting to the WSU Public Safety Department for use as a Mass Notification System remotely.

I. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

J. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

1. Consult with WSU Public Safety Department to determine the content of the instruction procedures.

2.5 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Single-action mechanism, breaking-glass or plastic-rod pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.

2. Station Reset: Key- or wrench-operated switch.

2.6 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.

2. Detectors shall be four -wire type.

3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

4. Self-Compensating: Sensors evaluate environmental conditions and compensate to maintain sensitivity and decrease nuisance alarms.

5. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.

6. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
B. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 4. Each sensor shall have multiple levels of detection sensitivity.
 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
 7. Test Switch: Push-to-test, simulates smoke at rated obscuration.
 8. Remote test key switch: Key-switch operation, simulates smoke at rated obscuration.

2.7 NOTIFICATION APPLIANCES
A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.
B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
C. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 2. Mounting: Wall mounted unless otherwise indicated.
 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 4. Flashing shall be in a temporal pattern, synchronized with other units.
 5. Strobe Leads: Factory connected to screw terminals.
D. Voice/Tone Notification Appliances:
 1. Comply with UL 1480.
 2. Speakers for Voice Notification: Locate speakers for voice notification to provide the intelligibility requirements of the "Notification Appliances" and "Emergency Communications Systems" chapters in NFPA 72.
 3. Low-Range Units: Rated 1 to 2 W.
 5. Matching Transformers: Tap range matched to acoustical environment of speaker location.

2.8 FIREFIGHTERS' SMOKE-CONTROL SYSTEM
A. Initiate Smoke-Management Sequence of Operation:
 1. Fire-alarm system shall provide all interfaces and control points required to properly activate the existing smoke-management systems.
2. First fire-alarm system initiating device to go into alarm condition shall activate the smoke-control functions.
3. Subsequent devices going into alarm condition shall have no effect on the smoke-control mode.

B. Addressable Relay Modules:
1. Provide address-setting means on the module. Store an internal identifying code for control panel use to identify the module type.
2. Allow the control panel to switch the relay contacts on command.
3. Have a minimum of two normally open and two normally closed contacts available for field wiring.
4. Listed for controlling HVAC fan motor controllers.

2.9 MAGNETIC DOOR HOLDERS
A. Description: Units are equipped for wall or floor mounting as indicated and are complete with matching doorplate.
1. Electromagnets: Require no more than 3 W to develop 25-lbf holding force.
2. Wall-Mounted Units: Flush mounted unless otherwise indicated.
3. Rating: 24-V ac or dc.

B. Material and Finish: Match door hardware.

2.10 REMOTE ANNUNCIATOR (FAAP)
A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE
A. General:
1. Include address-setting means on the module.
2. Store an internal identifying code for control panel use to identify the module type.
3. Listed for controlling HVAC fan motor controllers, fire pumps, and emergency generators for monitoring status.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay to elevator controller to initiate elevator recall.
1. Allow the control panel to switch the relay contacts on command.
2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:
1. Operate notification devices.
2. Operate solenoids for use in sprinkler service.

2.12 DIGITAL ALARM COMMUNICATOR TRANSMITTER
A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.
B. Functional Performance: Provide wiring and devices as required to transmit system information to WSU Public Safety Department.
 1. Consult with WSU Public Safety Department for system requirements and reporting criteria.

C. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply.
 5. Loss of power.
 6. Low battery.
 7. Abnormal test signal.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ELECTRIC POWER

A. Provide primary power for all fire alarm panel equipment from the emergency AC service to the building where shown on the drawings. Power shall be 120 VAC service, transformed through a two-winding, isolation type transformer and rectified to low voltage DC for operation of all circuits and devices. Make the service connection for the fire alarm panel equipment at the junction box labeled "FACP Connection" connected to the emergency distribution panel where shown. The circuit breaker shall be painted red, marked "Fire Alarm Control Circuit" and shall be provided with a lockable handle or cover.

3.3 SYSTEM FIELD WIRING

A. Wiring within Cabinets, Enclosures, Boxes, Junction Boxes and Fittings:
 1. Provide wiring installed in a neat and workmanlike manner and installed parallel with or at right angles to the sides and back of any box, enclosure or cabinet.
 2. Connect conductors which are terminated, spliced, or otherwise interrupted in any enclosure, cabinet, mounting or junction box, to terminal blocks.
 3. Mark each terminal in accordance with the wiring diagrams of the system. Make all connections with approved pressure type terminal blocks, which are securely mounted.
 4. Wire nuts and similar devices are not acceptable.

B. Fire Alarm Wiring:
 1. Provide fire alarm circuits in accordance with the equipment manufacturer’s requirements, NFPA 70 – National Electrical Code, specifically Article 760 and these Specifications. Provide wire size sufficient to prevent voltage drop problems.
 2. Circuits operating at 24 VDC shall not operate at less than 21.6 volts.
3. Audio speaker circuits operating at 70.7 VRMS shall be designated to operate at less than 0.5 dB (12.5 percent) loss. Circuits operating at any other voltage shall not have a voltage drop exceeding 10 percent of nominal voltage.

4. Install all conductors in electrical-metallic tubing (EMT), with a minimum diameter of 3/4 inch.
 a. Conductors that need to be fished in walls may be installed in MC cable, colored red in lieu of EMT.
 b. The use of MC cable in other locations must be approved by WSU prior to installation.

5. Use shielded wiring where recommended by the manufacturer. For shielded wiring, the shield shall be grounded at only one point, which shall be in or adjacent to the FACP. Treat the drain or shield wires as a fire alarm conductor, landed on terminal strips. The drain wire shall be sleeved or insulated to within 1 inch of its termination. T-taps are not permitted. Circuits to fan shutdown systems shall terminate in terminal cabinets within 3 feet of the controllers for those systems.

C. Wiring Installation:
 1. All alarm initiating devices and supervisory initiating devices shall be connected on Style 4 two (2) wire (Class B) Signaling Line Circuits (SLC). Unsupervised wiring (point wires) shall not be permitted. Parallel branch circuit wiring shall be permitted on the addressable SLCs.
 2. All alarm indicating devices shall be connected on Style Y two (2) wire electrically supervised circuits and on a minimum of two active circuits.
 3. Wiring to initiating and supervisory devices and to fire alarm annunciators shall be with two (2) conductor twisted size 16 solid copper UL listed fire alarm system wire, subject to manufacturer's recommendations.
 4. Wiring to alarm indicating devices shall be with two (2) conductors twisted No. 14 AWG solid copper UL listed jacketed fire alarm system wire, subject to manufacturer's recommendations.
 5. Power wiring, operating at 120 VAC minimum, shall be No. 12 AWG solid copper, 600 VAC rated THHN/THWN insulation.
 6. All other wiring shall be solid copper No. 14 AWG minimum with 600 volt THHN insulation except as specifically noted.
 7. No splicing of wires is permitted except on terminal blocks in annunciators, control panels or properly labeled terminal cabinets as shown on the drawings.
 8. The use of wire nuts or similar type devices is not permitted.

D. Conductor Terminations:
 1. All devices shall have terminals for each wiring connection.
 2. No splicing of any type shall be permitted in pull boxes, to include crimp terminals.
 3. No specific color coding is required for any circuit; however, labeling of any circuit at terminal blocks in terminal cabinets, FACP, and remote fire alarm control units shall be provided at each conductor connection.
 4. Each conductor or cable shall have a permanent label to provide a unique and specific designation.
 5. Each terminal cabinet, FACP and remote fire alarm control unit shall contain a laminated drawing which indicates each conductor, its label, circuit and terminal. The laminated drawing shall be neat, using 12 point lettering minimum size, and mounted within each cabinet, panel or unit so that it does not interfere with the wiring or terminals.
 6. All wires shall be labeled at both ends. Use plastic wire ties and wire tie mounts to ensure a neat quality appearance.

E. Conduit Installation:
 1. Conceal all electrical conduits (i.e., EMT, MC cable, etc.) above suspended ceilings and behind walls, except in unfinished areas where conduit may be surface mounted, unless otherwise specified.
 2. All concealed conduit and tubing shall have a factory-finished red color finish.
 3. All exposed conduit and tubing shall to painted to match adjacent finish.
4. MC cable shall not be used exposed.

F. Conduit Size:
 1. Both exposed and concealed conduit including risers up to 2 inches in diameter shall utilize compression type steel fittings and connectors.
 2. Unless otherwise noted, all conduit provided shall be 3/4 inch minimum trade size.
 3. Vertical risers shall be one inch diameter minimum.
 4. Limited use of 1/2 inch conduit is permitted on horizontal runs when a reduced diameter is required for better concealment. Where necessary, 1/2 inch diameter flex conduit may be fished in walls or above inaccessible ceilings. Provide plenum rated wiring conductors (Type FPLP) when flex conduit is used.

3.4 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems:"
 1. Devices placed in service before all other trades have completed cleanup shall be replaced.
 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Connecting to Existing Equipment:
 1. Expand, modify, and supplement existing control and monitoring equipment as necessary to extend existing control and monitoring functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.
 2. Provide conduit and wire required to provide remote monitoring functions to WSU Public Safety Department.

C. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

D. Smoke- or Heat-Detector Spacing:
 1. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.

E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

H. Audible Alarm-Indicating Devices: Install all devices at the same height unless otherwise indicated.

I. Visible Alarm-Indicating Devices: Install all devices at the same height unless otherwise indicated.

J. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.5 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 1. Alarm-initiating connection to smoke-control system (smoke management) at firefighters' smoke-control system panel.
2. Smoke dampers in air ducts of designated HVAC duct systems.
4. Supervisory connections at elevator shunt-trip breaker.
5. Data communication circuits for connection to building management system.
6. Data communication circuits for connection to WSU Public Safety System.
7. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
8. Supervisory connections at fire-pump engine control panel.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.7 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.8 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

D. Perform the following tests and inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION